Câu hỏi:

13/07/2024 1,979

Ba đường phân giác AD, BE, CF của tam giác ABC quy đồng tại O. Kẻ đường vuông góc OG đến BC. Chứng minh rằng ∠(BOG) = ∠(COD) .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Để chứng minh ∠(BOG) = ∠(COD), ta chứng minh ∠(BOD) = ∠(GOC).

+) Tổng ba góc trong 1 tam giác bằng 180º nên :

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Xét tam giác OAB, ta có góc ∠BOD là góc ngoài tam giác tại đỉnh O nên:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Lại có: BO và AO là tia phân giác của góc B và góc A nên:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xét tam giác vuông OCG ta có:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có AB < AC, đường cao AH. Chứng minh rằng: HB < HC, ∠(HAB) < ∠ (HAC)(xét hai trường hợp: B nhọn và B tù)

Xem đáp án » 13/07/2024 13,148

Câu 2:

Dựng các hình vuông ABDE và ACFG bên ngoài tam giác nhọn ABC cho trước. Gọi H là điểm thuộc đường thẳng BC sao cho AH ⊥ BC. Gọi I, J là các điểm thuộc đường thẳng AH sao cho EI ⊥ AH và GJ ⊥ AH. Chứng minh

ΔABH = ΔEAI, ΔACH = ΔGAJ

Từ đó suy ra đường thẳng AH cắt EG tại trung điểm K của EG (tức là AK là trung tuyến của tam giác AEG)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xem đáp án » 13/07/2024 5,163

Câu 3:

Cho tam giác ABC có AB < AC. Trên tia đối của tia BC lấy điểm M sao cho BM = BA. Trên tia đối của tia CB lấy điểm N sao cho CN = CA. Hãy so sánh các góc AMB và ANC.

Xem đáp án » 13/07/2024 4,601

Câu 4:

Chứng minh rằng trong một tam giác, đường cao không lớn hơn đường trung tuyến xuất phát từ một đỉnh.

Xem đáp án » 13/07/2024 4,299

Câu 5:

Dựng các hình vuông ABDE và ACFG bên ngoài tam giác nhọn ABC cho trước. Chứng minh rằng các đường thẳng AH, BF, CD đồng quy.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xem đáp án » 13/07/2024 4,192

Câu 6:

Cho tam giác ABC có hai đường trung tuyến AD, BE vuông góc với nhau. Chứng minh rằng BC < 2AC.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xem đáp án » 13/07/2024 2,846

Câu 7:

Cho tam giác ABC, các đường phân giác của các góc ngoài tại B và C cắt nhau ở E. Gọi G, H, K theo thứ tự là chân đường vuông góc kẻ từ E đến các đường thẳng BC, AB, AC. Đường phân giác của góc ngoài tại A của tam giác ABC cắt các đường thẳng BE, CE tại D, F. Chứng minh rằng EA vuông góc với DF.

Xem đáp án » 13/07/2024 2,386
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay