Câu hỏi:
12/07/2024 2,017Cho hình lập phương (H). Gọi (H’) là hình bát diện đều có các đỉnh là tâm các mặt của (H). Tính tỉ số diện tích toàn phần của (H) và (H’).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi a là cạnh của hình lập phương ABCD.;
⇒ Diện tích toàn phần của hình lập phương (H) là: SH = 6.a2 (đvdt).
Gọi tâm các mặt lần lượt là E, F, M, N, P, Q như hình vẽ.
⇒ (H’) là bát diện đều EMNPQF.
+ Áp dụng định lí pytago vào tam giác vuông AA’D ⇒ A’D = a√2
+ EM là đường trung bình của ΔBA’D
⇒ (H’) là bát diện đều gồm 8 mặt là các tam giác đều cạnh bằng
⇒ Diện tích một mặt của (H’) là:
⇒ Diện tích toàn phần của (H’) là:
Vậy tỉ số diện tích cần tính là:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Chứng minh rằng tâm của các mặt của hình tứ diện đều là các đỉnh của một tứ diện đều.
Câu 2:
Tìm ví dụ về khối đa diện lồi và khối đa diện không lồi trong thực tế.
Câu 4:
Cho hình bát diện đều ABCDEF.
Chứng minh rằng:
Các đoạn thẳng AF, BD và CE đôi một vuông góc với nhau và cắt nhau tại trung điểm mỗi đường.
Câu 5:
Chứng minh rằng tam giác IEF, IFM, IMN, INE, JEF, JFM, JMN và JNE là những tam giác đều cạnh bằng a/2.
Câu 6:
Cắt bìa theo mẫu dưới đây (h.123), gấp theo đường kẻ, rồi dán các mép lại để được các hình tứ diện đều, hình lập phương và hình bát diện đều.
về câu hỏi!