Câu hỏi:
23/04/2020 5,029Từ 9 học sinh gồm 4 học sinh giỏi, 3 học sinh khác, 2 học sinh trung bình, giáo viên muốn thành lập 3 nhóm làm 3 bài tập lớn khác nhau, mỗi nhóm 3 học sinh. Tính xác suất để nhóm nào cũng có học sinh giỏi và học sinh khá.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Chọn C.
Số phần tử của không gian mẫu là
Gọi X là biến cố “nhóm nào cũng có học sinh giỏi và học sinh khá”
Khi đó, ta xét các chia nhóm như sau:
· N1: 2 học sinh giỏi, 1 học sinh khá.
· N2: 1 học sinh giỏi, 1 học sinh khá và
· 1 học sinh trung bình.
· N3: 1 học sing giỏi, 1 học sinh khá
· và 1 học sinh trung bình.
Suy ra có cách chia
Vậy xác suất cần tính là
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng Oxy, phương trình nào sau đây là phương trình đường tròn?
Câu 2:
Hai lực cùng tác động vào một vật tại điểm M. Biết cường độ của hai lực đều là 5 N và góc hợp bởi hai lực là 60^0. Cường độ hợp lực tác động lên vật là:
Câu 3:
Cho hàm số f(x) và g(x) có đạo hàm trên đoạn [1;4] và thỏa mãn hệ thức:. Tính tích phân
Câu 5:
Cho số phức z=x+yi (x,y∈ R) thỏa mãn z+1-2i-(1-i)=0. Trong mặt phẳng tọa độ Oxy, M là điểm biểu diễn của số phức z, M thuộc đường thẳng nào sau đây?
Câu 6:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AC = 2a, tam giác SAB và tam giác SCB lần lượt vuông tại A, C. Khoảng cách từ S đến mặt phẳng (ABC) bằng 2a. Cosin của góc giữa hai mặt phẳng (SAB) và (SCB) bằng:
Câu 7:
Trong không gian tọa độ Oxyz, cho hai điểm A(3;4;5),B(-1;0;1). Tìm tọa độ điểm M thỏa mãn
về câu hỏi!