Câu hỏi:

13/07/2024 899 Lưu

Dùng diện tích để chứng tỏ : a+b2=a2+2ab+b2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Dựng hình vuông ABCD có cạnh bằng (a + b )

Trên cạnh AB dựng điểm E sao cho AE = a, EB = b, trên cạnh BC dựng điểm H sao cho BH = b, HC = a, trên cạnh CD dựng điểm G sao cho CG = b, GD = a, trên cạnh DA dựng điểm K sao cho DK = a, KA = b, GE cắt KH tại F.

Ta có : diện tích hình vuông ABCD bằng a+b2

Diện tích hình vuông DKFG bằng a2

Diện tích hình chữ nhật AKFE bằng a.b

Diện tích hình vuông EBHF bằng b2

Diện tích hình chữ nhật HCGF bằng a.b

SABCD=SDKFG+SAKEF+SEBHF+SHCGF

Vậy ta có : a+b2=a2+2ab+b2

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi độ dài hai cạnh hình chữ nhật là a và b (0 < a < b)

Theo bài ta, ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: 4/9 b.b = 144 ⇒ b2 = 144 : 4/9 = 144.9/4 = 324 = 182

⇒ b = 18 (cm) ⇒ a = 4/9 . 18 = 8 (cm)

Lời giải

Gọi chiều dài,chiều rộng của hình chữ nhật là a và b ( a> b >0).

Nếu mỗi cạnh tăng 10% thì độ dài mỗi cạnh sau khi tăng là: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Diện tích hình chữ nhật mới là: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Phần diện tích tăng thêm là: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy diện tích tăng thêm 21% so với diện tích ban đầu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP