Câu hỏi:

12/07/2024 7,288 Lưu

Cho tam giác ABC, các đường trung tuyến BD, CE cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GC. Chứng minh rằng tứ giác DEHK là hình bình hành.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tam giác ABC có hai đường trung tuyến BD và CE cắt nhau tại G nên G là trọng tâm tam giác ABC.

Ta có: GD = 1/2 GB (tính chất đường trung tuyến của tam giác)

GH = 1/2 GB (gt)

Suy ra: GD = GH

GE = 1/2 GC (tính chất đường trung tuyến của tam giác)

GK = 1/2 GC

Suy ra GE = GK

Tứ giác DEHK là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Điểm D đối xứng điểm H qua trục AB.

Suy ra AB là đường trung trực của HD

⇒ AH = AD (tính chất đường trung trực)

ADH cân tại A

Suy ra: AB là tia phân giác của (DAH)

⇒ (DAB) = A1

Điểm H và điểm E đối xứng qua trục AC

⇒ AC là đường trung trực của HE

⇒ AH = AE (tính chất đường trung trực) ⇒ AHE cân tại A

Suy ra: AC là đường phân giác của góc (HAE) ⇒ A2 = (EAC)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇒ D, A, E thẳng hàng

Ta có: AD = AE (vì cùng bằng AH)

Suy ra điểm A là trung điểm của đoạn DE.

Vậy điểm D đối xứng với điểm E qua điểm A

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tứ giác ADBM là hình thoi ⇒ AM // DB và AM = AD

Hay AM // BC và AM = AD (1)

Tứ giác ADCN là hình thoi ⇒ AN // DC và AD = AN

Hay AN // BC và AN = AD (2)

Từ (1) và (2) suy ra: AM trùng với AN hay M, A, N thẳng hàng

Và AM = AN nên A là trung điểm của MN

Vậy điểm M và điểm N đối xứng qua điểm A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP