Câu hỏi:
12/07/2024 3,494Cho hai tia Ax, By chéo nhau. Lấy M, N lần lượt là các điểm di động trên Ax, By. Gọi (α) là mặt phẳng chứa By và song song với Ax. Đường thẳng qua M và song song với AB cắt (α) tại M’.
a) Tìm tập hợp điểm M’.
b) Gọi I là trung điểm của MN. Tìm tập hợp các điểm I khi AM = BN
Câu hỏi trong đề: Giải sách bài tập Hình học 11 !!
Quảng cáo
Trả lời:
a) Gọi (β) là mặt phẳng xác định bởi hai đường thẳng AB và Ax
Do Ax // (α) nên (β) sẽ cắt (α) theo giao tuyến Bx’ song song với Ax.
Ta có M’ là điểm chung của (α) và (β) nên M’ thuộc Bx’.
Khi M trùng A thì M’ trùng B nên tập hợp M’ là tia Bx’.
Ta có tứ giác ABM’M là hình bình hành nên BM’ = AM = BN.
Tam giác BM’N cân tại B.
Suy ra trung điểm I của cạnh đáy NM’ thuộc phân giác trong Bt của góc B trong tam giác cân BNM’. Dễ thấy rằng Bt cố định.
Gọi O là trung điểm của AB. Trong mặt phẳng (AB, Bt), tứ giác OBIJ là hình bình hành nên . Do đó I là ảnh của J trong phép tịnh tiến theo vectơ . Vậy tập hợp I là tia Ot’ song song với Bt.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)
Mà AD, AF ⊂ (ADF)
Nên (ADF) // (BCE)
b) Vì ABCD và ABEF là các hình vuông nên AC = BF. Ta có:
So sánh (1) và (2) ta được:
c) Từ chứng minh trên suy ra DF // (MM′N′N)
Mà DF,EF ⊂ (DEF) nên (DEF) // (MM′N′N)
Vì MN ⊂ (MM′N′N) và (MM′N′N) // (DEF) nên MN // (DEF).
Lời giải
Gọi I, J và K lần lượt là trung điểm của các cạnh BC, CD và BD. Theo tính chất trọng tâm của tam giác ta có:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.