Câu hỏi:

06/05/2020 242

Cho hàm số f(x)=13x3-x2+x+3-log3m Có bao nhiêu số nguyên m để phương trình f(f(f(f(x))))=x có 3 nghiệm thực phân biệt

Đáp án chính xác

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có

Do đó hàm số f(x) đồng biến trên R. Với một hàm số f(x) đồng biến trên R ta có tính chất sau:

 Thật vậy

+) Nếu

 (vô lí);

+) Nếu

 (vô lí).

+) Nếu

 (thỏa mãn)/

Từ ba khả năng trên ta có điều phải chứng minh. Áp dụng tính chất này ta có:

Phương trình đã cho có ba nghiệm thực phân biệt khi và chỉ khi (*) có ba nghiệm thực phân biệt

Có tất cả 20 số nguyên thỏa mãn.

Chọn đáp án A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=f(x) có bảng biến thiên:

Giá trị lớn nhất của hàm số y=f(2sinx-1) bằng

Xem đáp án » 05/05/2020 10,558

Câu 2:

Cho hình nón có diện tích xung quanh bằng 3πa2 và bán kính đáy bằng a. Độ dài đường sinh của hình nón là

Xem đáp án » 05/05/2020 8,181

Câu 3:

Cho khối chóp S.ABC có SA AB,  AB BC, BC SC,  AB = 2a, BC = a, ASC^=60° Thể tích khối chóp S.ABC bằng

Xem đáp án » 05/05/2020 7,671

Câu 4:

Cho hàm số y=ax3+bx2+cx+d có đồ thị như hình vẽ. Biết diện tích hình phẳng tô đậm bằng 1. Giá trị của a-b+c-d bằng

Xem đáp án » 06/05/2020 5,067

Câu 5:

Cho hàm số y=f(x) có đồ thị hàm số y=f '(x) như hình vẽ bên. Số điểm cực trị của hàm số y=f(2sinx-1) trên khoảng -2π;2π là

Xem đáp án » 06/05/2020 4,721

Câu 6:

Cho parabol (P): y=x2 và đường thẳng d đi qua điểm A(1;2). Diện tích hình phẳng giới hạn bởi (C) và d có giá trị nhỏ nhất bằng

Xem đáp án » 06/05/2020 3,403

Câu 7:

Cho logab2b=3 (với a > 0, b > 0, ab2#0,ab2#1 Tính logabab3

Xem đáp án » 05/05/2020 3,220
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua