CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi a, b, q, r lần lượt là số bị chia, số chia, thương, số dư

Ta có: a = bq + r ( b ≠ 0 và 0 < r < b)

410 = bq + 19

bq = 410 – 19 = 391

Mà : 391 = 391 . 1 = 23 . 17

Vì b > r = 19 nên ta chọn b = 391 hoặc b = 23

- Số chia là 391 thì thương là 1

- Số chia là 23 thì thương là 17

Lời giải

Ta có: 2 + 4 + 6 +… + ( 2n ) = ( 2n + 2 ) . n : 2 = n ( n+1 )

Mà n . n < n ( n+1 ) < ( n + 1 )( n + 1 ) ⇒ n2 < n ( n + 1 ) < n+12

n2 và n+12  là số chính phương liên tiếp nên n ( n + 1 ) không thể là số chính phương. Ta có điều cần chứng minh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP