Một hình nón có đường kính đáy là 2a, góc ở đỉnh là 120°. Tính thể tích của khối nón đó theo a.
Quảng cáo
Đáp án B
Gọi S là đỉnh hình nón, O là tâm đáy, A là một điểm thuộc đường tròn đáy.
Theo giả thiết dễ suy ra đường tròn đáy có bán kính
Gói VIP thi online tại VietJack (chỉ 200k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết.
Cho hình nón đỉnh S với đáy là đường tròn tâm O bán kính R. Gọi I là một điểm nằm trên mặt phẳng đáy sao cho OI = R. Giả sử A là điểm nằm trên đường tròn (O; R) sao cho OA ⊥ OI. Biết rằng tam giác SAI vuông cân tại S. Khi đó, diện tích xung quanh của hình nón và thể tích V của khối nón là:
Cho hình nón tròn xoay có đỉnh là S, O là tâm của đường tròn đáy, đường sinh bằng a và góc giữa đường sinh và mặt phẳng đáy bằng 60°. Diện tích xung quanh của hình nón và thể tích V của khối nón tương ứng là:
Cho hình nón tròn xoay có đường cao 12cm và đường kính đáy 10cm. Độ dài đường sinh của hình nón là:
Cho hình chóp tứ giác đều S.ABCD có AB = a và góc giữa SA và đáy là 60o. Bán kính mặt cầu tâm A tiếp xúc với mặt phẳng (SBC) là:
Cho hình hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông cạnh a và cạnh bên bằng 2a. Thể tích khối nón có đỉnh là tâm O của hình vuông A'B'C'D' và đáy là hình tròn ngoại tiếp hình vuông ABCD là:
Cho hình chóp tam giác đều S.ABC, mặt phẳng (SBC) tạo với đáy một góc bằng 30o và SA = 2a. Thể tích khối cầu ngoại tiếp hình chóp S.ABC là:
Gọi 084 283 45 85
Hỗ trợ đăng ký khóa học tại Vietjack
về câu hỏi!