Câu hỏi:
02/07/2020 234Cho bất phương trình: (2m + 1)x + m - 5 ≥ 0
Tìm điều kiện của m để bất phương trình có nghiệm đúng với ∀x ∈ (0;1).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
(2m + 1)x + m - 5 ≥ 0 ⇔ (2m + 1)x ≥ 5 - m (*)
TH1: , bất phương trình (*) trở thành:
Tập nghiệm của bất phương trình là:
Để bất phương trình đã cho nghiệm đúng với ∀x ∈ (0;1)
thì (0;1)
Hay
TH2: , bất phương trình (*) trở thành:
Bất phương trình vô nghiệm. ⇒ không có m .
TH3: Với , bất phương trình (*) trở thành:
Tập nghiệm của bất phương trình là:
Để bất phương trình đã cho nghiệm đúng với ∀x ∈ (0;1)
thì (0;1)
Hay
Kết hợp điều kiện , ⇒ không có m thỏa mãn.
Vậy với m ≥ 5, bất phương trình đã cho nghiệm đúng với ∀x ∈ (0;1).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giải các bất phương trình và hệ bất phương trình sau:
a) -3 + 2x + 1 ≥ 0
b)
c) (1 - 2x)( - x - 1) < 0
Câu 3:
Với giá trị nào của m thì hai bất phương trình (m + 2)x ≤ m + 1 và 3m(x - 1) ≤ -x - 1 tương đương:
Câu 5:
Cho bất phương trình: m(x - m) ≥ x - 1. Các giá trị nào sau đây của m thì tập nghiệm của bấtphương trình là S = (;m + 1]:
Câu 6:
Bất phương trình nào sau đây không tương đương với bất phương trình x + 5 ≥ 0?
về câu hỏi!