Câu hỏi:

12/07/2024 1,045

Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số : x-13-3x+521-4x+56

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

⇔ 2x - 2 - 9x - 15 ≥ 6 - 4x - 5

⇔ 2x - 9x + 4x ≥ 6 - 5 + 2 + 15

⇔ -3x ≥ 18

⇔ x ≤ -6

Vậy tập nghiệm của phương trình là S= {x|x ≤ -6}

Biểu diễn nghiệm trên trục số:

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) 8( 3x - 2 ) - 14x = 2( 4 – 7x ) + 15x

⇔ 24x – 16 -14x = 8 – 14x + 15x

⇔ 10x -16 = 8 + x

⇔ 9x = 24

⇔ x = 24/9

b) ( 3x – 1 )( x – 3 ) – 9 + x2 = 0

⇔ (3x -1)( x – 3) + (x - 3)( x + 3) = 0

⇔ (x - 3)(3x - 1 + x - 3) = 0

⇔ (x - 3)(4x - 4) = 0

c) |x - 2| = 2x - 3

TH1: x - 2 ≥ 0 ⇔ x ≥ 2

Khi đó: x - 2 = 2x – 3

⇔ 2x – x = -2 + 3

⇔ x = 1 (không TM điều kiện x ≥ 2)

TH2: x – 2 < 0 ⇔ x < 2

Khi đó: x-2 = -(2x – 3)

⇔ x – 2 = -2x + 3

⇔ 3x = 5

⇔ x = 5/3 ( TM điều kiện x < 2)

MTC: x(x-2)

ĐKXĐ: x ≠ 0;x ≠ 2

Đối chiếu với ĐKXĐ thì pt có nghiệm x = - 1

Lời giải

A = -x2 + 2x + 9 = -(x2 – 2x + 1) + 10 = - (x + 1)2 + 10

Ta có: - (x + 1)2 ≤ 0 ∀x

- (x + 1)2 + 10 ≤ 10

Dấu bằng xảy ra khi (x + 1)2 = 0 ⇔ x = -1

Vậy GTLN của A là 10, đạt được khi x = -1