Câu hỏi:
03/08/2020 2,017Cho tam giác ABC có các đỉnh A(1;0), B(2;-3), C(-2;4) và đường thẳng Δ: x - 2y + 1 = 0. Đường thẳng Δ cắt cạnh nào của tam giác ABC?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án: C
Thay lần lượt tọa độ của ba điểm A, B, C vào đường thẳng Δ ta được:
A: 1 - 2.0 + 1 = 2 > 0
B: 2 - 2.(-3) + 1 = 9 > 0
C: -2 - 2.4 + 1 = -9 < 0
Ta thấy: A và C nằm khác phía so với Δ nên Δ cắt cạnh AC
B và C nằm khác phía so với Δ nên Δ cắt cạnh BC
Đã bán 100
Đã bán 121
Đã bán 218
Đã bán 1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường thẳng d: x + 2y - 2 = 0 và điểm M(2;5). Điểm M’ đối xứng với M qua d có tọa độ là:
Câu 2:
Cho hai đường thẳng d1: 2x + 2y + = 0 và d2: y - = 0. Góc giữa d1 và d2 có số đo bằng:
Câu 3:
Trong (Oxy), cho hình bình hành ABCD có tâm I(1;2) và hai đường thẳng AB, AD lần lượt có phương trình là x + 3y - 6 = 0 và 2x - 5y - 1 = 0. Viết phương trình đường thẳng BC và CD.
Câu 4:
Phương trình tổng quát của đường thẳng d đi qua A(-2;-1) và nhận làm vecto pháp tuyến là:
Câu 5:
Trong (Oxy) cho hai điểm A(-3;1), B(2;0) và đường thẳng Δ: 3x - y - 2 = 0
a) Viết phương trình tham số của đường thẳng AB
b) Viết phương trình tổng quát của đường thẳng d đi qua A và vuông góc với Δ
c) Tìm tọa độ điểm M trên đường thẳng Δ sao cho BM =
Câu 6:
Trong các đường thẳng có phương trình sau, đường thẳng nào cắt đường thẳng d: x - 2y + 1 = 0
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
50 câu trắc nghiệm Thống kê cơ bản (phần 1)
23 câu Trắc nghiệm Toán 10 (có đáp án): Phương trình chứa căn
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận