Câu hỏi:

09/07/2020 3,557

Cho các hệ phương trình sau:

a)x=22xy=3b)x+3y=22y=4

Trước hết, hãy đoán nhận số nghiệm của mỗi hệ phương trình trên (giải thích rõ lí do). Sau đó, tìm tập nghiệm của các hệ đã cho bằng cách vẽ hình.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải bài 18 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đường thẳng (d): x = 2 song song với trục tung.

Đường thẳng (d’): 2x – y = 3 không song song với trục tung

⇒ (d) cắt (d’)

⇒ Hệ có nghiệm duy nhất.

Vẽ (d): x = 2 là đường thẳng đi qua (2 ; 0) và song song với trục tung.

Vẽ (d’): 2x - y = 3

- Cho x = 0 ⇒ y = -3 được điểm (0; -3).

- Cho y = 0 ⇒ x = 1,5 được điểm (1,5 ; 0).

Giải bài 18 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta thấy hai đường thẳng (d) và (d’) cắt nhau tại A(2; 1).

Vậy hệ phương trình có nghiệm (2; 1).

Giải bài 18 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đường thẳng (d): x + 3y = 2 không song song với trục hoành

Đường thẳng (d’): 2y = 4 hay y = 2 song song với trục hoành

⇒ (d) cắt (d’)

⇒ Hệ phương trình có nghiệm duy nhất.

Vẽ (d1): x + 3y = 2

- Cho y = 0 ⇒ x = 2 được điểm (2; 0).

- Cho x = 0 ⇒ y = Giải bài 18 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9 được điểm (0; Giải bài 18 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9).

Vẽ (d2): y = 2 là đường thẳng đi qua (0; 2) và song song với trục hoành.

Giải bài 18 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta thấy hai đường thẳng (d) và (d’) cắt nhau tại A(-4; 2).

Vậy hệ phương trình có nghiệm (-4; 2).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Không cần vẽ hình, hãy cho biết số nghiệm của mỗi hệ phương trình sau đây và giải thích vì sao:

a)y=32xy=3x1b)y=12x+3y=12x+1c)2y=3x3y=2xd)3xy=3x13y=1

Xem đáp án » 09/07/2020 10,433

Câu 2:

Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:

a)x+y=23x+3y=2b)3x2y=16x+4y=0

Xem đáp án » 09/07/2020 8,277

Câu 3:

Nếu tìm thấy hai nghiệm phân biệt của một hệ hai phương trình bậc nhất hai ẩn (nghĩa là hai nghiệm được biểu diễn bởi hai điểm phân biệt) thì ta có thể nói gì về số nghiệm của hệ phương trình đó? Vì sao?

Xem đáp án » 09/07/2020 6,356

Câu 4:

 Cho hai phương trình 2x + y = 4 và 3x + 2y = 5.

a) Tìm nghiệm tổng quát của mỗi phương trình trên.

b) Vẽ các đường thẳng biểu diễn tập nghiệm của hai phương trình trong cùng một hệ trục tọa độ, rồi xác định nghiệm chung của chúng.

Xem đáp án » 09/07/2020 2,074

Câu 5:

Tìm từ thích hợp để điền vào chỗ trống (…) trong câu sau:

Nếu điểm M thuộc đường thẳng ax + by = c thì tọa độ (x0; y0) của điểm M là một … của phương trình ax + by = c.

Xem đáp án » 09/07/2020 1,311

Câu 6:

Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:

a)4x4y=22x+2y=1b)13xy=23x3y=2

Xem đáp án » 09/07/2020 851

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store