Câu hỏi:
13/07/2024 31,207Tính độ dài hai cạnh góc vuông của một tam giác vuông, biết rằng nếu tăng mỗi cạnh lên 3cm thì diện tích tam giác đó sẽ tăng thêm 36 , và nếu một cạnh giảm đi 2cm, cạnh kia giảm 4cm thì diện tích của tam giác giảm đi 26 cm2.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi x (cm) , y (cm) là độ dài hai cạnh góc vuông của tam giác vuông (x > 2, y > 4).
Diện tích tam giác ban đầu là (cm2)
+ Tăng mỗi cạnh lên 3cm thì tam giác vuông mới có độ dài 2 cạnh là x + 3(cm) và y + 3 (cm)
Diện tích tam giác mới là: (cm2)
Diện tích tăng thêm 36cm2 nên ta có phương trình:
+ Giảm một cạnh 2cm và giảm cạnh kia 4cm thì tam giác vuông mới có 2 cạnh là : x – 2 (cm) và y – 4 (cm).
Diện tích tam giác mới là: (cm2).
Diện tích giảm đi 26cm2 nên ta có phương trình
Lấy phương trình thứ hai trừ phương trình thứ nhất ta được:
Vậy tam giác có hai cạnh lần lượt là 9cm và 12cm.
Kiến thức áp dụng
Giải bài toán bằng cách lập hệ phương trình :
Bước 1 : Lập hệ phương trình
- Chọn các ẩn số và đặt điều kiện thích hợp
- Biểu diễn các đại lượng chưa biết và đã biết theo ẩn
- Lập các phương trình biểu thị mối quan hệ giữa các đại lượng theo đề bài.
- Từ các phương trình vừa lập rút ra được hệ phương trình.
Bước 2 : Giải hệ phương trình (thường sử dụng phương pháp thế hoặc cộng đại số).
Bước 3 : Đối chiếu nghiệm với điều kiện và kết luận.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hai vòi nước cùng chảy vào một bể nước cạn (không có nước) thì sau giờ đầy bể. Nếu lúc đầu chỉ mở vòi thứ nhất và 9 giờ sau mới mở thêm vòi thứ hai thì sau giờ nữa mới đầy bể. Hỏi nếu ngay từ đầu chỉ mở vòi thứ hai thì sau bao lâu mới đầy bể?
Câu 2:
Hãy giải bài toán trên bằng cách khác (gọi x là số phần công việc làm trong một ngày của đội A; y là số phần công việc làm trong một ngày của đội B). Em có nhận xét gì về cách giải này ?
Câu 3:
Hai người thợ cùng làm một công việc trong 16 giờ thì xong. Nếu người thứ nhất làm 3 giờ và người thứ hai làm 6 giờ thì chỉ hoàn thành được 25% công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc đó trong bao lâu?
Câu 4:
Giải hệ phương trình (II) bằng cách đặt ẩn phụ ( u = 1/x; v = 1/y) rồi trả lời bài toán đã cho.
về câu hỏi!