Câu hỏi:

11/07/2024 9,194

Một số nguyên tố p chia cho 42 có số dư r là hợp số. Tìm số dư r.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

p = 42.k + r. = 2.3.7.k + r

Vì r là hợp số và r < 42 nên r phải là tích của 2 số r = x.y

x và y không thể là 2, 3, 7 và cũng không thể là số chia hết cho 2, 3, 7 được vì nếu thế thì p không là số nguyên tố.

Vậy x và y có thể là các số trong các số {5,11,13, ..}

Nếu x=5 và y=11 thì r = x.y =55 > 42

Vậy chỉ còn trường hợp x = 5, y = 5. Khi đó r = 25

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tổng của hai số nguyên tố có thể bằng 2003 được không?

Xem đáp án » 11/07/2024 8,248

Câu 2:

Chứng minh rằng nếu ba số a, a+k, a+2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6

Xem đáp án » 11/07/2024 7,494

Câu 3:

Ta biết rằng có 25 số nguyên tố nhỏ hơn 100. Tổng của 25 số nguyên tố đó là số chẵn hay lẻ?

Xem đáp án » 11/07/2024 7,009

Câu 4:

Tìm hai số nguyên tố, sao cho tổng và hiệu của chúng đều là số nguyên tố.

Xem đáp án » 11/07/2024 6,848

Câu 5:

Tìm bốn số nguyên tố liên tiếp, sao cho tổng của chúng là số nguyên tố.

Xem đáp án » 11/07/2024 6,273

Câu 6:

Chứng minh rằng các số sau đây là hợp số:

a) 27+311+513+717+1119

Xem đáp án » 11/07/2024 4,668

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store