Thi Online Các dạng bài tập nâng cao về số nguyên tố cực hay, có lời giải
Các dạng bài tập nâng cao về số nguyên tố cực hay, có lời giải
-
1695 lượt thi
-
13 câu hỏi
-
25 phút
Câu 1:
Chứng minh rằng các số sau đây là hợp số:
a)
a) Ta có:
Theo quy ước ta có:
có chữ số tận cùng là 8
có chữ số tận cùng là 7
luôn có chữ số tận cùng là 5
có chữ số tận cùng là 7
luôn có chữ số tận cùng là 1
Ta có: có chữ số tận cùng là 8
Suy ra chia hết cho 2.
Vậy, đây là hợp số.
Câu 2:
Chứng minh rằng các số sau đây là hợp số:
b)
b) Ta có :
có chữ số tận cùng là 1
có chữ số tận cùng là 1 ( các số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n (n là số tự nhiên) thì có chữ số tận cùng là 1. Số đã cho có số mũ là 124 = 4.31)
luôn có chữ số tận cùng là 5
Nên có chữ số tận cùng là 8
suy ra chia hết cho 2.
vậy, đây là hợp số.
Câu 3:
Chứng minh rằng nếu ba số a, a+k, a+2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6
Do a, a + k, a + 2k đều là nguyên tố lớn hơn 3 nên đều là số lẻ và không chia hết cho 3.
• Vì a và a + k cùng lẻ nên a + k - a = k ⋮ 2. (1)
• Vì a, a + k, a + 2k đều không chia hết cho 3 nên khi chia cho 3 ít nhất hai số có cùng số dư, khi đó:
+ Nếu a và a + k có cùng số dư, thì suy ra: (a+k) - a = k ⋮ 3
+ Nếu a và a + 2k có cùng số dư, thì suy ra:
( a + 2k ) - a = 2k 3 nhưng (2,3) = 1 nên k 3
Vậy, ta luôn có k chia hết cho 3 (2)
Từ (1),(2) và do (2,3)=1 ta suy ra k ⋮ 6, đpcm.
Nhận xét: Trong lời giải trên, ta đã định hướng được rằng để chứng minh k ⋮ 6 thì cần chứng minh k ⋮ 2 và k ⋮ 3 và ở đó:
• Việc chứng minh k ⋮ 2 được đánh giá thông qua nhận định a, a + k,a + 2k đều là nguyên tố lẻ hơn kém nhau k đơn vị.
• Việc chứng minh k ⋮ 3 được đánh giá thông qua nhận định “ba số lẻ không chia hết cho 3 thì có ít nhất hai số có cùng số dư” và như vậy hiệu của hai số đó sẽ chia hết cho 3.
Câu 4:
Ta biết rằng có 25 số nguyên tố nhỏ hơn 100. Tổng của 25 số nguyên tố đó là số chẵn hay lẻ?
Ta thấy trong 25 số nguyên tố có 1 số chẵn còn lại là 24 số lẻ. Tổng của 24 số lẻ là một số chẵn nên tổng của 25 số nguyên tố nhỏ hơn 100 là số chẵn.
Câu 5:
Tổng của ba số nguyên tố bằng 1012. Tìm số nhỏ nhất trong ba số nguyên tố đó.
Vì tổng của 3 số nguyên tố bằng 1012, nên trong 3 số nguyên tố đó tồn tại một số nguyên tố chẵn. Mà số nguyên tố chẵn duy nhất là 2 và là số nguyên tố nhỏ nhất. Vậy số nguyên tố nhỏ nhất trong 3 số nguyên tố đó là 2
Đánh giá trung bình
100%
0%
0%
0%
0%
Nhận xét
2 năm trước
Phạm Anh Thư