Câu hỏi:

11/07/2024 4,676

Chứng minh rằng các số sau đây là hợp số:

b) 1+2123+23124+25125

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Ta có :1+2123+23124+25125

2123 có chữ số tận cùng là 1

23124 có chữ số tận cùng là 1 ( các số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n (n là số tự nhiên) thì có chữ số tận cùng là 1. Số đã cho có số mũ là 124 = 4.31)

25125 luôn có chữ số tận cùng là 5

Nên 1+2123+23124+25125 có chữ số tận cùng là 8

suy ra 1+2123+23124+25125 chia hết cho 2.

vậy, đây là hợp số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một số nguyên tố p chia cho 42 có số dư r là hợp số. Tìm số dư r.

Xem đáp án » 11/07/2024 9,675

Câu 2:

Tổng của hai số nguyên tố có thể bằng 2003 được không?

Xem đáp án » 11/07/2024 8,423

Câu 3:

Chứng minh rằng nếu ba số a, a+k, a+2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6

Xem đáp án » 11/07/2024 7,783

Câu 4:

Ta biết rằng có 25 số nguyên tố nhỏ hơn 100. Tổng của 25 số nguyên tố đó là số chẵn hay lẻ?

Xem đáp án » 11/07/2024 7,172

Câu 5:

Tìm hai số nguyên tố, sao cho tổng và hiệu của chúng đều là số nguyên tố.

Xem đáp án » 11/07/2024 7,005

Câu 6:

Tìm bốn số nguyên tố liên tiếp, sao cho tổng của chúng là số nguyên tố.

Xem đáp án » 11/07/2024 6,931

Câu 7:

Chứng minh rằng các số sau đây là hợp số:

a) 27+311+513+717+1119

Xem đáp án » 11/07/2024 4,825

Bình luận


Bình luận