Câu hỏi:

19/08/2025 5,204 Lưu

Chứng minh rằng các số sau đây là hợp số:

b) 1+2123+23124+25125

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

b) Ta có :1+2123+23124+25125

2123 có chữ số tận cùng là 1

23124 có chữ số tận cùng là 1 ( các số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n (n là số tự nhiên) thì có chữ số tận cùng là 1. Số đã cho có số mũ là 124 = 4.31)

25125 luôn có chữ số tận cùng là 5

Nên 1+2123+23124+25125 có chữ số tận cùng là 8

suy ra 1+2123+23124+25125 chia hết cho 2.

vậy, đây là hợp số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có:

p = 42.k + r. = 2.3.7.k + r

Vì r là hợp số và r < 42 nên r phải là tích của 2 số r = x.y

x và y không thể là 2, 3, 7 và cũng không thể là số chia hết cho 2, 3, 7 được vì nếu thế thì p không là số nguyên tố.

Vậy x và y có thể là các số trong các số {5,11,13, ..}

Nếu x=5 và y=11 thì r = x.y =55 > 42

Vậy chỉ còn trường hợp x = 5, y = 5. Khi đó r = 25

Lời giải

Vì tổng của 2 số nguyên tố bằng 2003, nên trong 2 số nguyên tố đó tồn tại 1 số nguyên tố chẵn. Mà số nguyên tố chẵn duy nhất là 2. Do đó số nguyên tố còn lại là 2001. Do 2001 chia hết cho 3 và 2001 > 3. Suy ra 2001 không phải là số nguyên tố. ⇒ Tổng của hai số nguyên tố không thể bằng 2003 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP