Câu hỏi:

21/08/2020 509 Lưu

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và cạnh bên bằng a3. Gọi V1,V2 lần lượt thể tích khối cầu và khối nón ngoại tiếp hình chóp S.ABCD. Tính tỷ số V1V2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Gọi O là tâm của hình vuông ABCD.vì S.ABCD là hình chop đều nên  SO(ABCD)

Từ giả thiết, ta có SO=SA2-OA2=a102 .

Khối nón ngoại tiếp hình chóp S.ABCD có chiều cao h=SO=a102 và bán kính đáy là  r=OA=a22 .

Suy ra V2=13πr2h=πa31012

Ta có SO là trục đường tròn ngoại tiếp hình vuông ABCD. Đường trung trực của SB nằm trong mặt phẳng (SBD) cắt SB, SO lần lượt tại M, I. Ta có IS = IB = IA = IC = ID nên I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.

Ta có SI.IO = SM.SB SI = SB22SO=3a1010

 

Suy ra V1=43π.(SI)3=9πa31025. Do đó V1V2=10825 

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D.

Ta có :

Ta có limx-4x-2x2-3x+2=limx-4x-2x2-3x+2=0 nên đường thẳng y = 0 là đường tiệm cận ngang của đồ thị hàm số y=4x-2x2-3x+2 nên đường thẳng y = 0 là đường tiệm cận ngang của đồ thị hàm số 

 

Lời giải

Đáp án B.

Số tam giác có 3 đỉnh là 3 trong 15 điểm đã cho bằng số cách chọn 3 điểm trong 15 điểm đã cho và bằng C153  (không quan tâm đến thứ tự đỉnh).

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP