Câu hỏi:

20/08/2020 234 Lưu

Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N là hai điểm thay đổi lần lượt thuộc cạnh BC, BD sao cho mặt phẳng AMN luôn vuông góc với mặt phẳng BCD. Gọi V1;V2 lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của thể tích khối tứ diện ABMN. TínhV1+V2?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Gọi O là tâm của tam giác BCDOABCD

AMNBCD suy ra MN luôn đi qua điểm O.

Đặt BM=x,BN=ySΔBMN=12.BM.BN.sinMBN^=34xy.

Tam giác ABO vuông tại O

Suy ra thể tích tứ diện ABMN là V=13.OA.SΔBMN=212xy.

Mà MN đi qua trọng tâm của ΔBCD3xy=x+y. 

Do đó:

xyx+y24=9xy2412xy49V1=224;V2=227.

Vậy V1+V2=172216.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án C

Gọi số hạng thứ nhất và công bội của cấp số nhân lần lượt là u1qq>0.

Ta có:

u3=u1q2=12u7=u1q6=192q4=16q=2

( vì q<0u1=3u10=3.29=1536

Lời giải

Đáp án A

Đồ thị hàm số y=2x+2x1   C có hai đường tiệm cận là x=1  d1;y=2  d2.

Gọi  MCMm;2m+2m1dM;d1=m1dM;d2=2m+2m12=4m1

Khi đó dM;d1+dM;d2=m1+4m12m1.4m1=4.

Dấu “=” xảy ra m1=4m1m12=4m=3m=1.

Vậy M3;4M1;0.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP