Câu hỏi:

13/07/2024 4,341

Chứng tỏ rằng nếu 3 số a, a + n, a + 2n đều là số nguyên tố lớn hơn 3 thì n chia hết cho 6.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chỳ ý rằng , các số nguyên tố (trừ số 2) đều là các số lẽ

- Nếu n lẽ thì  n + a là số chẵn là một hợp số trỏi với giả thiết n + a là số nguyên tố. vậy n là số chẳn

-  Ta dặt n = 2k, k  N*

+   Nếu  k chia hết cho 3 thì n chia hết cho 6

+   Nếu k = 3p + 1 , p  N* thì 3 số theo thứ tự bằng a, a + 6p + 2,

a + 12p + 4

+  Do a là số lẽ nên nếu a chia cho 3 dư 1 thì  a + 6p + 2 chia hết cho 3,

 Nếu a chia 3 dư 2 thì a + 12p + 4 chia hết cho 3

+  Nếu k = 3p + 2  p  N* thì 3 số theo thứ tự bằng

a + 6p +4, a + 12p +8

với a chia cho 3 dư 1 thì  a + 12p +8  chia hết cho 3

với a chia cho 3 dư 2 thì  a + 6p +4  chia hếtt cho 3

Vậy để 3 số a, a + n, a + 2n đều là số nguyên tố thì n phải chia hết cho 6.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tất cả các số nguyên tố p để 2p + p2 còng là số nguyên tố

Xem đáp án » 13/07/2024 31,128

Câu 2:

Tìm  n  N* sao cho : n3 – n2 + n – 1 là số nguyên tố

Xem đáp án » 13/07/2024 16,796

Câu 3:

Tìm các số nguyên tố x, y, z thoả mãn  xy + 1 = z

Xem đáp án » 13/07/2024 14,519

Câu 4:

Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p – 1)(p + 1) chia hết cho 24

Xem đáp án » 13/07/2024 14,187

Câu 5:

Chứng minh rằng nếu  2n – 1 là số nguyên tố  (n > 2) thì  2n + 1  là hợp số.

Xem đáp án » 13/07/2024 13,461

Câu 6:

Tìm các ước nguyên tố của các số 30, 210, 2310

Xem đáp án » 13/07/2024 10,483

Câu 7:

Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10  chứa nhiều số nguyên tố nhất .

Xem đáp án » 13/07/2024 10,304
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua