Câu hỏi:

13/07/2024 3,015

Hai số nguyên tố gọi là sinh đôi nếu chúng là hai sô nguyên tố lẽ liên tiếp ( p > 3). Chứng minh rằng một số tự nhiên  nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi hai số nguyên tố sinh đội là p và p + 2. Vậy số tự nhiên nằm giữa chúng là p + 1

-p là số nguyên tố lớn hơn 3 nên p là số nguyên tố lẻ vậy p + 1 là số chẳn

 p + 1 2 (1)

-    p, p + 1, p + 2 là 3 số  nguyên liờn tiếp nên có một số chia hết cho 3. Mà p và p +2 là số nguyên tố nên không chia hếtt cho 3 ,vậy

 p + 13  (2)

Từ (1) và (2) : (2, 3) = 1 suy ra  p + 1 6 (đpcm)

Bài toỏn có thể mở rụng thành :

Chứng minh rằng và p + 2 là hai số nguyên tố lớn hơn 3 thì tổng

Của chúng chia hết cho 12.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tất cả các số nguyên tố p để 2p + p2 còng là số nguyên tố

Xem đáp án » 13/07/2024 22,588

Câu 2:

Tìm  n  N* sao cho : n3 – n2 + n – 1 là số nguyên tố

Xem đáp án » 13/07/2024 12,571

Câu 3:

Chứng minh rằng nếu  2n – 1 là số nguyên tố  (n > 2) thì  2n + 1  là hợp số.

Xem đáp án » 13/07/2024 10,534

Câu 4:

Tìm các ước nguyên tố của các số 30, 210, 2310

Xem đáp án » 13/07/2024 10,033

Câu 5:

Tìm các số nguyên tố x, y, z thoả mãn  xy + 1 = z

Xem đáp án » 13/07/2024 9,789

Câu 6:

Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10  chứa nhiều số nguyên tố nhất .

Xem đáp án » 13/07/2024 8,579

Câu 7:

Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p – 1)(p + 1) chia hết cho 24

Xem đáp án » 13/07/2024 8,114

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store