Câu hỏi:

13/07/2024 4,700 Lưu

1.Chứng minh rắng số dư trong phép chia một số nguyên tố cho 30 chỉ có thể là 1 hoặc là số nguyên tố. Khi chia cho 60 thì kết quả  ra sao

2. Chứng minh rằng nếu tổng của n luỹ thừa bậc 4 của các số nguyên tố lớn hơn 5  là một số nguyên tố thì (n, 30) = 1

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

1.Giả sử p là số nguyên tố và p = 30k + r (0 < r < 30)

Nếu r là hợp số thì r co ước nguyên tố q 30 q = 2, 3, 5

Nhưng với q = 3, 3, 5 thì p lần lượt chia hết cho 2, 3, 5  vô lí . Vậy r = 1 hoặc r là số nguyên tố.

Khi chia cho 60 thì kết quả không còn đúng nữa

 Chẳng hạn p = 109 = 60.1 + 49       ( 49 là hợp số )

2. Số nguyên tố p khi chia cho 30 chỉ có thể dư là 1, 7, 11, 13, 17, 19, 23, 29

Với r = 1, 11, 19, 29 thì p2  1 (mod 30 )

Với r = 7, 13, 17, 23 thì  p2  19  (mod 30 )

Suy ra  p4   1  (mod 30 )

Giả sử p1, p2,…, pn   là các số nguyen tố lớn hơn 5

Khi đó

   (mod 30)

Suy ra p = 30k + n là số nguyên tố nên (n, 30 ) = 1

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Với p = 2 ta co  2p + p2 = 12  không là số nguyên tố

Với p = 2 ta có 2p + p2 = 17 là số nguyên tố

Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )

Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó  2p + p2  là hợp số

Vậy với p = 3 thì 2p + p2  là số nguyên tố.

Lời giải

Ta có p-1pp+1  3   mà (p, 3) = 1 nên

           p-1p+1  3                    (1)

 p là số nguyên tố lớn hơn 3 nên p là số lẽ, p – 1 và p + 1 là hai số chẳn liên tiếp , có một số là bội của 4 nên tích của chúng chia hết cho 8  (2)

Từ (1) và (2) suy ra (p – 1)(p + 1) chia hết cho 2 nguyên tố cùng nhau là 3 và 8

Vậy (p – 1)(p + 1) chia hết cho 24.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP