Câu hỏi:
13/07/2024 217
Từ các số tự nhiên 1, 2, 3 hỏi có thể lập được bao nhiêu số tự nhiên có ba chữ số khác nhau và chia hết cho 7.
Câu hỏi trong đề: Ôn tập Số Nguyên cực hay có lời giải !!
Quảng cáo
Trả lời:
Sơ đồ con đường | Lời giải chi tiết |
Bước 1. Lập các số tự nhiên có ba chữ số khác nhau từ ba chữ số tự nhiên đó. Bước 2. Tìm các số tự nhiên chia hết cho 7. Bước 3. Đếm. | Các số tự nhiên được lập là: 123; 132; 231; 213; 312; 321. Số tự nhiên chia hết cho 7 là: 231. Vậy chỉ có 1 số tự nhiên chia hết cho 7.
|
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Sơ đồ con đường | Lời giải chi tiết |
| Xét Áp dụng tính chất chia hết của tích và tổng ta có: Vậy 4a+3b chia hết cho 7. |
Lời giải
Sơ đồ con đường | Lời giải chi tiết |
Bước 1. Phân tích sao cho tổng đó thành tích các thừa số trong đó có một thừa số chia hết cho 7. Bước 2. Áp dụng tính chất chia hết của một tích. | Ta có: |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.