Câu hỏi:
12/07/2024 27,403Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax, với đường tròn (O) (A là tiếp điểm ). Qua C thuộc tia Ax, vẽ đường thẳng cắt đường tròn (O) tại hai điểm D và E (D nằm giữa C và E; D và E nằm về hai phía của đường thẳng AB). Từ O vẽ OH vuông góc với đoạn thẳng DE tại H.
a) Chứng minh : tứ giác AOHC nội tiếp.
b) Chứng minh : AC.AE= AD.CE
c) Đường thẳng CO cắt tia BD, tia BE lần lượt tại M và N. Chứng minh : AM//BN
Câu hỏi trong đề: 19 đề ôn thi vào 10 chuyên hay có lời giải !!
Quảng cáo
Trả lời:
a) Ta có
Vậy tứ giác AOHC nội tiếp.
b) Ta có chung suy ra (g.g)
c) Từ E vẽ đường thẳng song song với MN cắt cạnh AB tại I và cắt cạnh BD tại F.
Vì tứ giác AOHC nội tiếp .
Suy ra tứ giác AHIE nội tiếp .
Mà H là trung điểm của DE=> I là trung điểm của EF. Có EF//MN và IE= IF
=> O là trung điểm của đoạn thẳng MN.
Suy ra tứ giác AMBN là hình bình hành => AM//BN.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a, Với m= 2, ta có
b) Phương trình (1) có hai nghiệm khi và chỉ khi
Theo Vi-et , ta có:
Theo đề bài ta có:
Do nên , . Suy ra
Vậy khi .
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.