Câu hỏi:

12/07/2024 6,770

Cho hai hàm số y=12x2 và y=x4 có đồ thị lần lượt là ( P ) và ( d )

1) Vẽ  hai đồ thị ( P ) và ( d ) trên cùng một mặt phẳng tọa độ.

2 ) Tìm tọa độ giao điểm của hai đồ thị ( P ) và ( d ).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Vẽ  hai đồ thị ( P ) và ( d ) trên cùng một mặt phẳng tọa độ.

*y=12x2

Hàm số xác định với mọi x

Bảng giá trị

x

-2

-1

0

1

2

y

-2

-0,5

0

-0,5

-2

Nhận xét: Đồ thị hs là một parabol đi qua gốc tọa độ,nhận trục tung làm trục đối xứng nằm phía dưới trục hoành,O là điểm cao nhất

*y=x-4

Đồ thị hs là đường thẳng đi qua hai điểm (0;-4) và (4;0)

 


 

 

 

 

 

 

 

 

 

 

2)Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình
12x2=x4x22x8=0

Δ'=1+8=9>0 nên phương trình có 2 nghiệm phân biệt x1=2;x2=-4

x1=2 => y1=-2       ; x2=-4 => y2=-8

Vậy tọa độ giao điểm của (P) và (d) là (2;-2) và (-4;-8)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1: Gọi x(xe) là số xe của đội lúc đầu ( x nguyên dương)

Số tấn hàng mỗi xe dự định chở 120x(tấn)

x+4 (xe) là số xe của đội lúc sau

Số tấn hàng mỗi xe khi thực hiện chở 120x+4(tấn)

Theo đề bài ta có phương trình 120x-120x+4= 1

Giải phương trình ta được x=20 (thỏa đk); x=-24 (không thỏa đk)

Vậy số tấn hàng mỗi xe dụ định chở là 120:20=6 (tấn)

Cách 2:

Gọi x là số tấn hàng của mỗi xe ban đầu dự định chở ( x nguyên dương, x > 1 )

Số tấn hàng của mỗi xe lúc sau chở: x – 1 ( tấn )

Số xe dự định ban đầu : 120x  ( xe )

 Số xe lúc sau : 120x-1  ( xe )

Theo đề bài ta có phương trình : 120x-1 – 120x = 4 

Giải pt ta được : x1 = 6 ( nhận );  x2 = –5 ( loại )

Vậy số tấn hàng của mỗi xe ban đầu dự định chở là : 6 (tấn )

Lời giải

Cách 1:

x42x23=0x43x2+x23=0(x23)(x2+1)=0x23=0x2+1=0x=±3Vn(x20x2+1>0)

Vây phương trình có tập nghiệm S=3;3

Cách 2: Đặt t=x2 (t0) ta có phương trình t2-2t-3=0 (2)

Ta có a-b+c=1+2-3=0 nên phương trình (2) có 2 nghiệm t1=-1(loại);t2=3(nhận)

Với t2=3x2=3x=±3

Vậy phương trình có tập nghiệm S=3;3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay