Câu hỏi:
13/07/2024 787Cho ba điểm A, M, B phân biệt, thẳng hàng và M nằm giữa A, B. Trên cùng một nửa mặt phẳng bờ là đường thẳng AB, dựng hai tam giác đều AMC và BMD. Gọi P là giao điểm của AD và BC.
c) Đường thẳng nối tâm của hai đường tròn ngoại tiếp hai tứ giác AMPC và BMPD cắt PA, PB tương ứng tại E, F. Chứng minh CDFE là hình thang.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
c) Ta có EF là đường trung trực của PM ⇒ EP = EM ⇒ ∆ EPM cân tại E
Mặt khác EPM = ACM = 60o (do AMPC là tứ giác nội tiếp) nên ∆ EPM đều
⇒ PE = PM . Tương tự PF = PM
Ta có CM // DB nên PCM = PBD
Mà BMPD là tứ giác nội tiếp nên PBD = PMD. Suy ra PCM = PMD
Ta lại có CPM = DPM = 120o
Theo định lý Talét đảo ta có CE // DF ⇒ CDFE là hình thang.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho parabol (P): y = -x2 và đường thẳng d: y = 2mx – 1 với m là tham số.
b) Chứng minh rằng với mỗi giá trị của m, d luôn cắt (P) tại hai điểm phân biệt A, B. Gọi y1, y2 là tung độ của A, B. Tìm m sao cho
Câu 2:
Một người đi xe máy từ địa điểm A đến địa điểm B cách nhau 120 km. Vận tốc trên 3/4 quãng đường AB đầu không đổi, vận tốc trên 1/4 quãng đường AB sau bằng 1/2 vận tốc trên 3/4 quãng đường AB đầu. Khi đến B, người đó nghỉ 30 phút và trở lại A với vận tốc lớn hơn vận tốc trên 3/4 quãng đường AB đầu tiên lúc đi là 10 km/h. Thời gian kể từ lúc xuất phát tại A đến khi xe trở về A là 8,5 giờ. Tính vận tốc của xe máy trên quãng đường người đó đi từ B về A?
Câu 3:
Cho ba điểm A, M, B phân biệt, thẳng hàng và M nằm giữa A, B. Trên cùng một nửa mặt phẳng bờ là đường thẳng AB, dựng hai tam giác đều AMC và BMD. Gọi P là giao điểm của AD và BC.
a) Chứng minh AMPC và BMPD là các tứ giác nội tiếp
Câu 4:
Cho parabol (P): y = -x2 và đường thẳng d: y = 2mx – 1 với m là tham số.
a) Tìm tọa độ giao điểm của d và (P) khi m = 1
Câu 6:
Cho ba điểm A, M, B phân biệt, thẳng hàng và M nằm giữa A, B. Trên cùng một nửa mặt phẳng bờ là đường thẳng AB, dựng hai tam giác đều AMC và BMD. Gọi P là giao điểm của AD và BC.
b) Chứng minh
c) Đường thẳng nối tâm của hai đường tròn ngoại tiếp hai tứ giác AMPC và BMPD cắt PA, PB tương ứng tại E, F. Chứng minh CDFE là hình thang.
Câu 7:
Cho a, b, c là ba số thực không âm và thỏa mãn: a + b + c = 1. Chứng minh rằng
về câu hỏi!