Câu hỏi:
13/07/2024 3,553Cho nửa đường tròn (O) có đường kính AB = 2R. CD là dây cung thay đổi của nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A và D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F.
a) Chứng minh tứ giác CFDH nội tiếp
b) Chứng minh CF.CA = CH.CB
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Vì C, D thuộc nửa đường tròn đường kính AB nên
Suy ra tứ giác CHDF nội tiếp
b) Vì AH ⊥ BF, BH ⊥ AF nên H là trực tâm ∆ AFB ⇒ FH ⊥ AB
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho a, b, c là 3 số dương thỏa mãn ab + bc + ca = 3abc. Chứng minh rằng:
Câu 2:
Cho parabol (P): y = -x2 và đường thẳng (d): y = 4x – m
a) Vẽ parabol (P)
b) Tìm tất cả các giá trị của tham số m để (d) và (P) có đúng một điểm chung
Câu 5:
Cho nửa đường tròn (O) có đường kính AB = 2R. CD là dây cung thay đổi của nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A và D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F.
c) Gọi I là trung diểm của HF. Chứng minh tia OI là tia phân giác của góc COD.
d) Chứng minh điểm I thuộc một đường tròn cố định khi CD thay đổi
về câu hỏi!