Câu hỏi:
11/07/2024 2,374Cho nửa đường tròn (O) có đường kính AB = 2R. CD là dây cung thay đổi của nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A và D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F.
c) Gọi I là trung diểm của HF. Chứng minh tia OI là tia phân giác của góc COD.
d) Chứng minh điểm I thuộc một đường tròn cố định khi CD thay đổi
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
c) Vì nên tứ giác CHDF nội tiếp đường tròn tâm I đường kính FH
=> IC = ID. Mà OC = OD nên ∆ OCI = ∆ ODI (c.c.c) => COI = DOI
=> OI là phân giác của góc COD
d) Vì OC = CD = OD = R nên ∆ OCD đều => COD = 60o
Có
Xét góc nội tiếp và góc ở tâm cùng chắn cung CD của (I), có
CID = 2CFD = 120o => OIC = OID =
Xét góc nội tiếp và góc ở tâm cùng chắn cung CD của (I), có
CID = 2CFD = 120o => OIC = OID
Mặt khác COI = DOI = vuông tại D
Suy ra
Vậy I luôn thuộc đường tròn
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho a, b, c là 3 số dương thỏa mãn ab + bc + ca = 3abc. Chứng minh rằng:
Câu 2:
Cho parabol (P): y = -x2 và đường thẳng (d): y = 4x – m
a) Vẽ parabol (P)
b) Tìm tất cả các giá trị của tham số m để (d) và (P) có đúng một điểm chung
Câu 4:
Cho nửa đường tròn (O) có đường kính AB = 2R. CD là dây cung thay đổi của nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A và D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F.
a) Chứng minh tứ giác CFDH nội tiếp
b) Chứng minh CF.CA = CH.CB
Câu 6:
Cho phương trình x2 – 5x + 3m + 1 = 0 (m là tham số). Tìm tất cả các giá trị của m để phương trình trên có hai nghiệm phân biệt x1, x2 thỏa mãn
về câu hỏi!