Câu hỏi:

12/07/2024 9,632

Cho tam giác ABC vuông tại A, M là trung điểm của BC. Đường thẳng qua M song song với AB cắt AC tại D, đường thẳng qua M song song với AC cắt AB tại E.

a) Chứng minh rằng tứ giác ADME là hình chữ nhật.

b) Nếu AB = AC thì các tứ giác ADME, BEDC là hình gì? Vì sao?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chứng minh rằng tứ giác ADME là hình chữ nhật.

ΔABC vuông tại AABAC (BAC^=90)

Theo giả thiết, ta có:

+) MD // ABABACMDAC (quan hệ từ vuông góc đến song song)

MDA^=90

+) ME // ACABACMEAB (quan hệ từ vuông góc đến song song)

MED^=90

Xét tứ giác ADME ta có: BAC^=MED^=MDA^=90

=> Tứ giác ADME là hình chữ nhật (dấu hiệu nhận biết)

b) Nếu AB = AC thì các tứ giác ADME, BEDC là hình gì? Vì sao?

*) Xét ΔABC ta có:

+) BM=MCMD // ABMD là đường trung bình trong ΔABC.

AD=DC=AC2

+) BM=MCME // ADME là đường trung bình trong ΔABC.

AE=EB=AB2

Nếu AB = AC thì AD = AE.

Mà tứ giác ADME là hình chữ nhật => Tứ giác ADME là hình vuông (dấu hiệu nhận biết)

Vậy nếu AB = AC thì tứ giác ADME là hình vuông.

*) Xét ΔABC ta có:

EA=EBDA=DCED là đường trung bình của ΔABC

=> ED // BC

=> EDBC là hình thang (dấu hiệu nhận biết)

Nếu AB = AC thì ΔABC là tam giác vuông cân (theo định nghĩa)

Suy ra, ABC^=ACB^ (tính chất)

Hay EBC^=DCB^.

=> EDCB là hình thang cân (dấu hiệu nhận biết)

Vậy nếu AB = AC thì EDCB là hình thang cân.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Chứng minh tứ giác AEHF là hình chữ nhật.

ΔABC vuông tại BAC^=90

Vì HEABHFAC nên HEA^=90,  HFA^=90.

Xét tứ giác AEHF ta có:

EAF^=HEA^=HFA^=90

Suy ra, tứ giác AEHF là hình chữ nhật (dấu hiệu nhận biết).

b) Gọi D là điểm đối xứng của A qua F. Chứng minh DHEF là hình bình hành.

AEHF là hình chữ nhật suy ra EH // AFEH = AF (tính chất của hình chữ nhật)

D là tâm đối xứng của A qua F nên F là trung điểm của AD. Suy ra, AF = FD.

Do đó, EH // FDEH = FD.

Suy ra, DHEF là hình bình hành (dấu hiệu nhận biết)

c) Gọi I là giao điểm của EFAH; M là trung điểm của BC. Qua A kẻ tia Ax vuông góc với đường thẳng MI cắt tia CB tại K. Chứng minh 4 điểm K, E, I, F thẳng hàng.

+) Vì I là giao điểm của EFAH nên ba điểm E, I, F thẳng hàng.

+) Gọi O là giao điểm của EFAM.

AM là đường trung tuyến của ΔABC nên AM = MC suy ra ΔAMC cân tại M. Do đó, MAC^=MCA^.

EHFA là hình chữ nhật, có I là giao điểm hai đường chéo nên ta có IAF^=IFA^.

Xét ΔAHC ta có: HAC^+HCA^=90 hay IAF^+MCA^=90

IFA^+MAC^=90 hay OFA^+OAF^=90

Xét ΔOAF có OFA^+OAF^=90 suy ra AOF^=90

=> EF vuông góc với AM tại O hay IF vuông góc với AM tại O.

+) Xét ΔKAM ta có:

GMKA tại G

AHKM tại H

I là giao điểm của AHGM nên I là trực tâm của ΔKAM.

KIAM mà IFAM

=> K, I, F thẳng hàng.

Ta có:

Ba điểm E, I, F thẳng hàng.

Ba điểm K, I, F thẳng hàng.

=>  Bốn điểm I, K, E, F thẳng hàng.

Lời giải

Ta có xy2=x22xy+y2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay