Câu hỏi:
12/07/2024 9,632Cho tam giác ABC vuông tại A, M là trung điểm của BC. Đường thẳng qua M song song với AB cắt AC tại D, đường thẳng qua M song song với AC cắt AB tại E.
a) Chứng minh rằng tứ giác ADME là hình chữ nhật.
b) Nếu AB = AC thì các tứ giác ADME, BEDC là hình gì? Vì sao?
Câu hỏi trong đề: Đề thi cuối kì 1 Toán 8 sưu tầm !!
Quảng cáo
Trả lời:
a) Chứng minh rằng tứ giác ADME là hình chữ nhật.
vuông tại ()
Theo giả thiết, ta có:
+) (quan hệ từ vuông góc đến song song)
+) (quan hệ từ vuông góc đến song song)
Xét tứ giác ADME ta có:
=> Tứ giác ADME là hình chữ nhật (dấu hiệu nhận biết)
b) Nếu AB = AC thì các tứ giác ADME, BEDC là hình gì? Vì sao?
*) Xét ta có:
+) là đường trung bình trong .
+) là đường trung bình trong .
Nếu AB = AC thì AD = AE.
Mà tứ giác ADME là hình chữ nhật => Tứ giác ADME là hình vuông (dấu hiệu nhận biết)
Vậy nếu AB = AC thì tứ giác ADME là hình vuông.
*) Xét ta có:
là đường trung bình của
=> ED // BC
=> EDBC là hình thang (dấu hiệu nhận biết)
Nếu AB = AC thì là tam giác vuông cân (theo định nghĩa)
Suy ra, (tính chất)
Hay .
=> EDCB là hình thang cân (dấu hiệu nhận biết)
Vậy nếu AB = AC thì EDCB là hình thang cân.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Chứng minh tứ giác AEHF là hình chữ nhật.
vuông tại A
Vì , nên .
Xét tứ giác AEHF ta có:
Suy ra, tứ giác AEHF là hình chữ nhật (dấu hiệu nhận biết).
b) Gọi D là điểm đối xứng của A qua F. Chứng minh DHEF là hình bình hành.
Vì AEHF là hình chữ nhật suy ra EH // AF và EH = AF (tính chất của hình chữ nhật)
Vì D là tâm đối xứng của A qua F nên F là trung điểm của AD. Suy ra, AF = FD.
Do đó, EH // FD và EH = FD.
Suy ra, DHEF là hình bình hành (dấu hiệu nhận biết)
c) Gọi I là giao điểm của EF và AH; M là trung điểm của BC. Qua A kẻ tia Ax vuông góc với đường thẳng MI cắt tia CB tại K. Chứng minh 4 điểm K, E, I, F thẳng hàng.
+) Vì I là giao điểm của EF và AH nên ba điểm E, I, F thẳng hàng.
+) Gọi O là giao điểm của EF và AM.
Vì AM là đường trung tuyến của nên AM = MC suy ra cân tại M. Do đó, .
Vì EHFA là hình chữ nhật, có I là giao điểm hai đường chéo nên ta có .
Xét ta có: hay
hay
Xét có suy ra
=> EF vuông góc với AM tại O hay IF vuông góc với AM tại O.
+) Xét ta có:
tại G
tại H
Mà I là giao điểm của AH và GM nên I là trực tâm của .
mà
=> K, I, F thẳng hàng.
Ta có:
Ba điểm E, I, F thẳng hàng.
Ba điểm K, I, F thẳng hàng.
=> Bốn điểm I, K, E, F thẳng hàng.
Lời giải
Ta có
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 25
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Đề cuối kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án- Đề 2
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận