Câu hỏi:
13/07/2024 3,051Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:
Một mảnh đất hình chữ nhật có chu vi bằng 46m. Nếu tăng chiều rộng thêm 4m và giảm chiều dài đi 20% chiều dài ban đầu thì mảnh đất đó trở thành hình vuông. Tính diện tích của mảnh vườn hình chữ nhật đó
Câu hỏi trong đề: Bộ Đề thi vào 10 môn Toán có đáp án !!
Quảng cáo
Trả lời:
Gọi chiều dài của hình chữ nhật là x (m) (0 < x < 23)
Gọi chiều rộng của hình chữ nhật là y (m) (0 < y < x < 23)
Chu vi hình chữ nhật là 46 m nên ta có phương trình
2(x + y) = 46 ⇔ x + y = 23
Nếu tăng chiều rộng 4m và giảm chiều dài đi 20% thì mảnh đất đó trở thành hình vuông nên ta có phương trình
Ta có hệ phương trình:
Vậy chiều dài của hình chữ nhật là 15m
Chiều rộng của hình chữ nhật là 8m
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a, Xét tứ giác CAOB có:
∠CAO = 90o (AC là tiếp tuyến của (O))
∠CBO = 90o (BC là tiếp tuyến của (O))
=> ∠CAO + ∠CBO = 180o
=> Tứ giác BCAO là tứ giác nội tiếp
b, Xét đường tròn (O) có:
∠CAF = ∠ADE (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn 1 cung)
Lại có: ∠ECF = ∠ADE (CO // AD; hai góc so le trong)
=> ∠CAF = ∠ECF
Xét ΔCFA và ΔEFC có:
∠CAF = ∠ECF
∠CFA là góc chung
=> ΔCFA ∼ ΔEFC
=> =
=> CF2 = FE.FA
c, Ta có:
∠CAF = ∠EBA (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn 1 cung)
Lại có: ∠CAF = ∠ECF (cmt)
=> ∠EBA = ∠ECF
Xét tứ giác CEBH có:
∠EBA = ∠ECF
=> 2 đỉnh B và C cùng nhìn EH dưới 2 góc bằng nhau
=> Tứ giác CEBH là tứ giác nội tiếp
=> ∠BEH = ∠HCB ( 2 góc nội tiếp cùng chắn cung HB)
Mà ∠HCB = ∠HCA (CO là tia phân giác của góc ACB)
=> ∠BEH = ∠HCA (1)
Mặt khác: ΔCFA ∼ ΔEFC => ∠HCA = ∠CEF (2 góc tương ứng) (2)
Từ (1) và (2) : ∠BEH = ∠CEF
d,
Xét tam giác ACO vuông tại A có:
AC2 + AO2 = CO2 => AC2 = 4R2 - R2 = 3R2
=> CB2 = CA2 = 3R2
Ta có: AB ⊥ CO (Tính chất 2 tiếp tuyến cắt nhau)
CO // AD (gt)
=> AB ⊥ AD => BD là đường kính của đường tròn (O)
Xét tam giác BCD vuông tại B có:
BC2 + BD2 = CD2 => CD2 = 3R2 + 4R2 = 7R2
=> CD = R
Xét ΔCEA và ΔCDA có:
Xét tam giác CAO vuông tại A có:
=> ∠BOA = 2∠AOC = 120o => ∠AOD = 60o (kề bù với góc (BOA )
Tam giác AOD cân tại O có ∠AOD = 60o nên tam giác AOD đều
=> AD = AO = R
Ta có: OC // AD
Lời giải
Đặt (a,b ≥ 0),phương trình trở thành:
Với a = b, ta có:
Với 2a = 3b, ta có:
Đối chiếu với ĐKXĐ thì phương trình có tập nghiệm là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.