Câu hỏi:

12/07/2024 11,980 Lưu

Cho ΔABC vuông tại A, trung tuyến AM. Từ M kẻ MH vuông góc với AB tại H, MK vuông góc với AC tại K.

a) Tứ giác AHMK là hình gì? Vì sao?

b) Chứng minh tứ giác BHKM là hình bình hành.

c) Gọi E là trung điểm của HM, F là trung điểm của KM. Gọi giao điểm của HK với AE và AF lần lượt là I và S. Chứng minh HI = KS.

d) Giả sử ΔABC có cạnh BC không đổi, có thêm điều kiện gì thì ΔABC có diện tích lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

(cùng vuông góc với AC) và HB = MK nên tứ giác BHKM là hình bình hành.

c) Gọi O là giao điểm của AM và HK thì O là trung điểm của AM và HK

ΔAHM có hai đường trung tuyến AE và HO cắt nhau tại I nên I là trọng tâm của tam giác ΔAHM

trùng với H khi đó ΔABC có AM là đường trung tuyến đồng thời là đường cao nên ΔABC cân tại A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP