Câu hỏi:

13/07/2024 1,327

Chứng minh rằng với mọi số nguyên a, b, c, d, tích abacadbcbdcd chia hết cho 12.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

P=(ab)(ac)(ad)(bc)(bd)(cd).

Xét bốn số a, b, c, d khi chia cho 3, tồn tại hai số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3, nên P chia hết cho 3.

Xét bốn số a, b, c, d khi chia cho 4 :

– Nếu tồn tại hai số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4.

– Nếu bốn số ấy có số dư khác nhau khi chia cho 4 (là 0, 1, 2, 3) thì hai số có số dư là 0 và 2 có hiệu chia hết cho 2, hai số có số dư là 1 và 3 có hiệu chia hết cho 2. Do đó P chia hết cho 4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP