Câu hỏi:
24/03/2021 203Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên bằng . Xét điểm M thay đổi trên mặt phẳng SCD sao cho tổng nhỏ nhất. Gọi là thể tích của khối chóp S.ABCD và là thể tích của khối chóp M.ACD. Tỉ số bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình hộp ABCD.A'B'C'D'. Gọi lần lượt là thể tích của khối tứ diện ACB’D’ và khối hộp ABCD.A'B'C'D'. Tỉ số bằng:
Câu 2:
Cho tứ diện ABCD có , tam giác ACD đều, hình chiếu vuông góc của A lên mặt phẳng (BCD) trùng với trực tâm H của tam giác BCD, mặt phẳng (ADH) tạo với mặt phẳng (ACD) một góc . Tính thể tích khối tứ diện ABCD.
Câu 4:
Cho tứ diện SABC và G là trọng tâm của tứ diện, mặt phẳng quay quanh AG và cắt các cạnh SB, SC tương ứng tại M, N. Giá trị nhỏ nhất của tỉ số là
Câu 5:
Cho hình chóp S.ABC, đáy là tam giác ABC có , hình chiếu của S lên mặt phẳng (ABC) là trung điểm O của cạnh AC. Khoảng cách từ A đến mặt phẳng (SBC) bằng 2. Mặt phẳng (SBC) hợp với mặt phẳng (ABC) một góc thay đổi. Biết rằng giá trị nhỏ nhất của thể tích khối chóp S.ABC bằng , trong đó , a là số nguyên tố. Tổng a + b bằng:
Câu 6:
Cho hình chóp S.ABCD có đáy là hình thoi cạnh bằng 2, và tam giác SBD vuông cân tại S. Gọi E là trung điểm của SC. Mặt phẳng (P) qua AE và cắt hai cạnh SB, SD lần lượt tại M và N. Thể tích lớn nhất của khối đa diện ABCDNEM bằng:
Câu 7:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Điểm I thuộc đoạn SA. Biết mặt phẳng (MNI) chia khối chóp S.ABCD thành hai phần, phần chứa đỉnh S có thể tích bằng lần phần còn lại. Tính tỉ số ?
về câu hỏi!