Câu hỏi:
25/03/2021 4,872Cho hình chóp S.ABC có AB = 5cm, BC = 6cm, CA = 7cm. Hình chiếu vuông góc của S xuống mặt phẳng (ABC) nằm bên trong tam giác ABC. Các mặt phẳng (SAB), (SBC), (SCA) đều tạo với đáy một góc . Gọi AD, BE, CF là các đường phân giác của tam giác ABC với D ∈ BC, E ∈ AC, F ∈ AB .Thể tích S.DEF gần nhất với số nào sau đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Vì các mặt phẳng (SAB), (SBC), (SCA) đều tạo với đáy một góc và hình chiếu vuông góc của S xuống mặt phẳng (ABC) nằm bên trong tam giác ABC nên ta có hình chiếu của S xuống mặt phẳng (ABC) là tâm đường tròn nội tiếp I của tam giác ABC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho khối lăng trụ ABC.A’B’C’, khoảng cách từ C đến đường thẳng BB’ bằng , khoảng cách từ A đến các đường thẳng BB’ và CC’ lần lượt bằng 1 và 2, hình chiếu vuông góc của A lên mặt phẳng (A’B’C’) là trung điểm M của B’C’ và . Thể tích của khối lăng trụ đã cho bằng:
Câu 2:
Cho hình chóp S.ABC có AB=3, BC=4, AC=5. Tính thể tích khối chóp S.ABC biết rằng các mặt bên tạo với đáy một góc và hình chiếu vuông góc của S trên (ABC) nằm trong tam giác ABC.
Câu 3:
Cho hình chóp đều S.ABCD có đáy là hình vuông cạnh a, M là trung điểm của SA. Biết mặt phẳng (MCD) vuông góc với mặt phẳng (SAB). Thể tích khối chóp S.ABCD là:
Câu 4:
Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a, hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) nằm trong tứ giác ABCD, các cạnh xuất phát từ đỉnh A của hình hộp tạo với nhau một góc . Tính thể tích khối hộp ABCD.A'B'C'D'
Câu 5:
Xét khối tứ diện ABCD có cạnh AD, BC thỏa mãn và các cạnh còn lại đều bằng 5. Biết thể tích của khối tứ diện ABCD đạt giá trị lớn nhất có dạng . Khi đó, x, y thỏa mãn bất đẳng thức nào dưới đây?
Câu 6:
Khối chóp S.ABCD có đáy là hình thoi cạnh a, SA=SB=SC=a. Cạnh SD thay đổi. Thể tích khối chóp S.ABCD lớn nhất khi độ dài cạnh SD là:
về câu hỏi!