Câu hỏi:

04/04/2021 2,465 Lưu

Cho tam giác ABC vuông cân tại A có AB=AC=12. Lấy một điểm M thuộc cạnh huyền BC và gọi H là hình chiếu của M lên cạnh góc vuông AB. Quay tam giác AMH quanh trục là đường thẳng AB tạo thành mặt nón tròn xoay (N), hỏi thể tích V của khối nón tròn xoay (N) lớn nhất là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Quay tam giác vuông AMH quanh trục AB ta được khối nón có đỉnh A, bán kính đáy HM và đường cao AH, khi dó ta có thể tích của khối nón tròn xoay (N) là: 

Đặt  ta có BHM vuông cân tại H nên

Khi đó 

Xét hàm số  

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi thể tích của phếu là V, bán kính đáy phễu là R, bán kính của cột nước có dạng khối nón trong hình 1 là R1.

Ta có:

Gọi  là thể tích của nước ta có:

Sau khi úp ngược phễu lên, thể tích của phần không có nước có dạng khối nón có thể tích là: 

Gọi V1 là chiều cao và bán kính đáy của khối nón không chứa nước ở hình 2, ta có:

 Chiều cao của cột nước trong hình 2 là: 20-1073cm

Đáp án cần chọn là: C

Lời giải

Gọi h, x lần lượt là chiều cao, độ dài cạnh đáy của hình chóp tam giác đều S.ABC.

Bán kính đường tròn nội tiếp ABC là thể tích khối nón nội tiếp là: 

Bán kính đường tròn ngoại tiếp ABC là thể tích khối nón nội tiếp là 

Vậy tỉ số 

Đáp án cần chọn là: A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP