Câu hỏi:
15/01/2021 35,995Trong nhóm 60 học sinh có 30 học sinh thích học Toán, 25 học sinh thích học Lý và 10 học sinh thích cả Toán và Lý. Chọn ngẫu nhiên 1 học sinh từ nhóm này. Xác suất để được học sinh này thích học ít nhất là một môn Toán hoặc Lý?
Câu hỏi trong đề: 100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản !!
Quảng cáo
Trả lời:
Gọi A là tập hợp " học sinh thích học toán"
Gọi B là tập hợp “học sinh thích học Lý”
Gọi C là tập hợp ” học sinh thích học ít nhất một môn “
Ta có n(C) = n( A ∪ B) = n(A) + n(B) – n(A ∩ B) = 30 + 25 – 10 = 45
Vậy xác suất để được học sinh này thích học ít nhất là một môn Toán hoặc Lý là:
Chọn B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A là biến cố "Chọn được 2 viên bi xanh"; B là biến cố "Chọn được 2 viên bi đỏ",
C là biến cố "Chọn được 2 viên bi vàng" và X là biến cố "Chọn được 2 viên bi cùng màu".
Ta có X = A ∪ B ∪ C và các biến cố đôi một xung khắc.
Do đó, ta có: P(X)=P(A)+P(B)+P(C) .
Mà:
Vậy
Chọn A.
Lời giải
Gọi A là biến cố “Lấy lần thứ hai được một viên bi xanh”. Có hai trường hợp xảy ra
Biến cố B: Lấy lần thứ nhất được bi xanh, lấy lần thứ hai cũng được một bi xanh.
Xác suất trong trường hợp này là
Biến cố C: Lấy lần thứ nhất được bi đỏ, lấy lần thứ hai được bi xanh.
Xác suất trong trường hợp này là
Ta thấy 2 biến cố B và C là xung khắc nên
→Đáp án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.