Trong nhóm 60 học sinh có 30 học sinh thích học Toán, 25 học sinh thích học Lý và 10 học sinh thích cả Toán và Lý. Chọn ngẫu nhiên 1 học sinh từ nhóm này. Xác suất để được học sinh này thích học ít nhất là một môn Toán hoặc Lý?
Câu hỏi trong đề: 100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản !!
Quảng cáo
Trả lời:
Gọi A là tập hợp " học sinh thích học toán"
Gọi B là tập hợp “học sinh thích học Lý”
Gọi C là tập hợp ” học sinh thích học ít nhất một môn “
Ta có n(C) = n( A ∪ B) = n(A) + n(B) – n(A ∩ B) = 30 + 25 – 10 = 45
Vậy xác suất để được học sinh này thích học ít nhất là một môn Toán hoặc Lý là:
Chọn B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A là biến cố "Chọn được 2 viên bi xanh"; B là biến cố "Chọn được 2 viên bi đỏ",
C là biến cố "Chọn được 2 viên bi vàng" và X là biến cố "Chọn được 2 viên bi cùng màu".
Ta có X = A ∪ B ∪ C và các biến cố đôi một xung khắc.
Do đó, ta có: P(X)=P(A)+P(B)+P(C) .
Mà:
Vậy
Chọn A.
Lời giải
Gọi A là biến cố “Lấy lần thứ hai được một viên bi xanh”. Có hai trường hợp xảy ra
Biến cố B: Lấy lần thứ nhất được bi xanh, lấy lần thứ hai cũng được một bi xanh.
Xác suất trong trường hợp này là
Biến cố C: Lấy lần thứ nhất được bi đỏ, lấy lần thứ hai được bi xanh.
Xác suất trong trường hợp này là
Ta thấy 2 biến cố B và C là xung khắc nên
→Đáp án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.