Câu hỏi:

18/08/2021 192

Cho hàm số y=f(x) có đồ thị như hình bên. Có bao nhiêu số nguyên m để bất phương trình x3x2+xm.fx0 nghiệm đúng với mọi x2;52?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Đặt gx=x3x2+xm.

Từ đồ thị hàm số y=f(x) ta có fx0,x2;1fx<0,x1;52.

Bất phương trình x3x2+xm.fx0 nghiệm đúng với mọi x2;52.

gx0,x2;1gx0,x1;52limx1+gx0;limx1gx0

Do hàm số y=g(x) liên tục trên nên ta có: limx1+gx=limx1gx=g1g1=0m=1.

Thử lại, với m=1 ta có gx=x3x2+xm=x3x2+x1=x1x2+1 thỏa mãn đề bài

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án C

Hàm số y=log2x+3 xác định x+3>0x>3.

Câu 2

Lời giải

Đáp án B

Ta có 2x=4=22x=2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP