Câu hỏi:

24/08/2021 281

Có bao nhiêu giá trị nguyên của tham số m100;100 để phương trình

log3x2m+1=(m+3)(x1) có hai nghiệm thực dương phân biệt?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Điều kiện xác định x>0

Với m=12, phương trình không có 2 nghiệm thực dương phân biệt

Với m12, ta có: log3x2m+1=(m+3)(x1)f(x)=log3x=m+32m+1xm+32m+1

Để thỏa mãn yêu cầu bài toán thì: m+32m+1>0m+32m+1f'(1) (phương pháp tiếp tuyến và tương giao)

m>12m<3m+32m+11ln3m>12m<3m100;100m100;312;100.

Do mm±100;±99;...;±4;0;1;2;3: có 198 giá trị của m thỏa mãn đề bài

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương trình 14 cung tròn có bán kính R = 2 (như hình vẽ) là x2+y2=4y0; x2;0y=4x2.

Khi đó hình phẳng (H) được tách thành 2 hình phẳng.

(H1):y=4x2y=0x=2x=0 và (H2):y=4xy=0x=0x=4.

Nên ta có: V=V1+V2=π20(4x2)dx+π04(4x)dxCasio40π3.

Chú ý: Ở bài toán này V1 là phần thể tích của 12 khối cầu (sau khi quay 14 đường tròn bán kính R = 2 quanh trục Ox) nên ta có thể tính V1 bằng công thức thể tích khối cầu như sau: V1=12.43π.23=16π3.

Lời giải

Đáp án D

Từ đồ thị hàm số y=f'(x) ta có bảng biến thiên:

Dựa vào bảng biến thiên suy ra đồ thị y=f(x) cắt trục hoành (y = 0) nhiều nhất tại 4 điểm phân biệt. Vậy phương trình f(x)=0 có nhiều nhất 4 nghiệm

Câu 3

Kết quả tính đạo hàm nào sau đây sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay