Câu hỏi:

30/08/2021 12,951

Trên giá sách có 6 quyển sách Toán khác nhau, 7 quyển sách Văn khác nhau và 8 quyển sách Tiếng Anh khác nhau. Có bao nhiêu cách lấy 2 quyển sách thuộc 2 môn khác nhau?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Xét các TH:

+ lấy 1 quyển sách Toán và 1 quyển sách Văn

+ lấy 1 quyển sách Toán và 1 quyển sách Tiếng Anh

+ lấy 1 quyển sách Văn và 1 quyển sách Văn

Sử dụng chỉnh hợp và quy tắc cộng.

Số cách lấy 1 quyển sách Toán và 1 quyển sách Văn là 6.7=42 cách.

Số cách lấy 1 quyển sách Toán và 1 quyển sách Tiếng Anh là 6.8=48 cách.

Số cách lấy 1 quyển sách Văn và 1 quyển sách Văn là 7.8=56 cách.

Vậy số cách lấy 2 quyển sách thuộc 2 môn khác nhau là: 42+48+56=146 cách

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp giải:

- Tính g'(x).

- Giải phương trình g'(x)=0, xác định số nghiệm của phương trình f'(x)=0 dựa vào đồ thị hàm số y=f'(x).

- Lập BXD đạo hàm g'(x) và suy ra các khoảng nghịch biến của hàm số.

- Để hàm số nghịch biến trên (1;2) thì (1;2) phải là con của những khoảng nghịch biến của hàm số.

Giải chi tiết:

Vậy có 2021 giá trị nguyên của m thỏa mãn hay tập hợp  có 2021 phần tử.

Lời giải

Đáp án C

Phương pháp giải:

- Sử dụng định lí: Góc giữa hai mặt phẳng là giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.

- Xác định góc giữa hai mặt phẳng, sử dụng định lí Pytago và định lí Côsin trong tam giác để tính góc.

Giả sử ABCD.A'B'C'D' là khối lập phương có cạnh bằng 1

Dễ thấy BC'EF là hình bình hành nên EF=BC'=2.

Áp dụng định lí Côsin trong tam giác MEF ta có

Mà góc giữa hai mặt phẳng là góc nhọn, có giá trị côsin là số dương.

Vậy cosMC'D';MAB=78585

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay