Câu hỏi:

13/09/2021 3,838 Lưu

Cho hàm số y=f(x) có đạo hàm f'x=lnx+1ex-2019x+1 trên khoảng 0;+. Hỏi hàm số y=f(x) có bao nhiêu điểm cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A.

Tập xác định: D=0;+.

f'x=0lnx+1ex-2019x+1=0lnx+1=0ex-2019=0x+1=0lnx=-1ex=2019x=-1x=1e0;+x=ln20190;+x=-10;+

Bảng biến thiên:

Hàm số đạt cực đại tại x=1e. Đạt cực tiểu tại x=ln2019

Vậy trên khoảng 0;+ thì hàm số y=f(x) có 2 điểm cực trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn C.

Ta có loga2b=12logab.

Lời giải

Chọn D.

Bán kính đường tròn ngoại tiếp tam giác đều ABC là: R=23.a32=a33.

Bán kính đường tròn đáy ngoại tiếp tam giác đều ABC và A’B’C’ chính là bán kính đáy khối trụ: R=a33. Thể tích khối trụ tròn xoay cần tìm V=πR2h=π.a332.a=πa33.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP