Câu hỏi:

28/10/2021 266

Biết số phức z=a+bi, a,b thỏa mãn điều kiện z24i=z2i có môđun nhỏ nhất. Tính M=a2+b2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Gọi z=a+bi, a,b. Ta có z24i=z2ia+bi24i=a+bi2i

a22+b42=a2+b22a+b4=0

z=a2+b2=a2+4a2=2a22+822

Vậy |z| nhỏ nhất khi a = 2, b = 2. Khi đó M=a2+b2=8.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Có tất cả A64=360 số tự nhiên có 4 chữ số đôi một khác nhau từ tập A.

Tập hợp B có 360 số.

Ta xét phép thử “chọn thứ tự 2 số thuộc tập B”.

Khi đó nΩ=A3602

Trong tập hợp B ta thấy có tất cả 4.A53=240 số có mặt chữ số 3 và A54=120 số không có mặt chữ số 3.

Gọi A là biến cố “trong 2 số vừa chọn có đúng một số có mặt chữ số 3”.

Khi đó nA=C2401.C1201.2!.

Vậy xác suất cần tìm là C2401.C1201.2!A3602=160359.

Câu 2

Lời giải

Đáp án D

Nếu d //α và bα thì chưa chắc d//b, có thể xảy ra trường hợp d và b chéo nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP