Câu hỏi:

11/07/2024 4,524

Các lớp 6A, 6B, 6C, 6D, 6E có số học sinh tương ứng là 40, 45, 39, 44, 42. Hỏi:

a) Lớp nào có thể xếp thành 3 hàng với số học sinh ở mỗi hàng là như nhau?

b) Lớp nào có thể xếp thành 9 hàng với số học sinh ở mỗi hàng là như nhau?

c) Có thể xếp tất cả học sinh của năm lớp đó thành 3 hàng với số học sinh ở mỗi hàng là như nhau được không?

d) Có thể xếp tất cả học sinh của năm lớp đó thành 9 hàng với số học sinh ở mỗi hàng là như nhau được không?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Để số học sinh của một lớp có thể xếp thành ba hàng với số học sinh ở mỗi hàng là như nhau thì tổng số học sinh của lớp đó phải là số chia hết cho 3. 

Trong các số 40; 45; 39; 44; 42 thì:

+ Số 45 chia hết cho 3 (vì 45 có tổng các chữ số là 4 + 5 = 9 chia hết cho 3)

+ Số 39 chia hết cho 3 (vì 39 có tổng các chữ số là 3 + 9 = 12 chia hết cho 3)

+ Số 42 chia hết cho 3 (vì 42 có tổng các chữ số là 4 + 2 = 6 chia hết cho 3)

Vậy các lớp 6B, 6C; 6E có thể xếp thành 3 hàng với số học sinh ở mỗi hàng là như nhau.

b) Để số học sinh của một lớp có thể xếp thành chín hàng với số học sinh ở mỗi hàng là như nhau thì tổng số học sinh của lớp đó phải là số chia hết cho 9. 

Trong các số 40; 45; 39; 44; 42 thì chỉ có số 45 chia hết cho 9 (vì 45 có tổng các chữ số là 4 + 5 = 9 chia hết cho 9).

Vậy chỉ có lớp 6B có thể xếp thành 9 hàng với số học sinh ở mỗi hàng là như nhau.

c) Tổng số học sinh của cả 5 lớp 6A, 6B, 6C, 6D, 6E là: 

40 + 45 + 39 + 44 + 42 = 210 (học sinh)

Ta có số 210 là số chia hết cho 3 (vì tổng các chữ số của số 210 là 2 + 1 + 0 = 3 chia hết cho 3)

Do đó tổng số học sinh của cả 5 lớp là số chia hết cho 3.

Vậy ta có thể xếp tất cả học sinh của 5 lớp đó thành 3 hàng với số học sinh ở mỗi hàng là như nhau. 

d) Ta có số 210 là số không chia hết cho 9 (vì tổng các chữ số của số 210 là 2 + 1 + 0 = 3 không chia hết cho 9)

Do đó tổng số học sinh của cả 5 lớp là số không chia hết cho 9.

Vậy ta không thể xếp tất cả học sinh của 5 lớp đó thành 9 hàng với số học sinh ở mỗi hàng là như nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm chữ số thích hợp ở dấu * để số:

a) 3*7 chia hết cho 3;

b) 27* chia hết cho 9.

Xem đáp án » 12/07/2024 10,686

Câu 2:

Trong các số 2, 3, 5, 9, số nào là ước của n với:

a) n = 4 536;

b) n = 3 240;

c) n = 9 805?

Xem đáp án » 12/07/2024 9,887

Câu 3:

Tìm chữ số thích hợp ở dấu * để số:

a) 13* chia hết cho 5 và 9;

b) 67* chia hết cho 2 và 3.

Xem đáp án » 12/07/2024 8,871

Câu 4:

Cho các số 104, 627, 3 114, 5 123, 6 831 và 72 102. Trong các số đó:

a) Số nào chia hết cho 3? Vì sao?

b) Số nào không chia hết cho 3? Vì sao?

c) Số nào chia hết cho 9? Vì sao?

d) Số nào chia hết cho 3, nhưng không chia hết cho 9? Vì sao?

Xem đáp án » 12/07/2024 6,540

Câu 5:

Viết một số có hai chữ số sao cho:

a) Số đó chia hết cho 3 và 5;

b) Số đó chia hết cho cả ba số 2, 3, 5.

Xem đáp án » 12/07/2024 5,822

Câu 6:

Viết một số có hai chữ số sao cho:

a) Số đó chia hết cho 2 và 9;

b) Số đó chia hết cho cả ba số 2, 5, 9.

Xem đáp án » 12/07/2024 2,599

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store