Câu hỏi:
13/07/2024 2,676Một lớp học có 27 học sinh nam và 18 học sinh nữ. Có bao nhiêu cách chia lớp đó thành các tổ sao cho số học sinh nam và số học sinh nữ ở mỗi tổ là như nhau? Cách chia nào để mỗi tổ có số học sinh ít nhất?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Vì số học sinh nam và số học sinh nữ ở mỗi tổ là như nhau nên số tổ sẽ là ước chung của 27 và 18.
Ta có: 27 = 33, 18 = 2.32.
Suy ra ƯCLN(27, 18) = 32 = 9.
ƯC(27, 18) = {1; 3; 9}.
Do đó ta có ba cách chia lớp thành 1 tổ, 3 tổ và 9 tổ, ta có bảng sau:
Số tổ | Số học sinh nam mỗi tổ | Số học sinh nữ mỗi tổ |
1 | 27 | 18 |
3 | 9 | 6 |
9 | 3 | 2 |
Để số học sinh trong mỗi tổ là ít nhất thì ta chia lớp đó thành 9 tổ.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
a) Số nào là ước chung của 15 và 105 trong các số sau: 1; 5; 13; 15; 35; 53?
b) Tìm ƯCLN(27, 156).
c) Tìm ƯCLN(106, 318), từ đó tìm các ước chung của 424, 636.
Câu 3:
Tìm các số tự nhiên a, b, biết:
a) a + b = 192 và ƯCLN(a, b) = 24;
b) ab = 216 và ƯCLN(a, b) = 6.
Câu 4:
Ba khối 6, 7 và 8 lần lượt có 300 học sinh, 276 học sinh và 252 học sinh xếp thành các hàng dọc để diễu hành sao cho số hàng dọc của mỗi khối là như nhau. Có thể xếp nhiều nhất thành mấy hàng dọc để mỗi khối đều không có ai lẻ hàng? Khi đó ở mỗi hàng dọc của mỗi khối có bao nhiêu học sinh?
Câu 5:
Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau:
a) n + 2 và n + 3;
b) 2n + 1 và 9n + 4.
Câu 6:
Tìm số tự nhiên a, biết:
a) 388 chia cho a thì dư 38, còn 508 chia cho a thì dư 18;
b) 1 012 và 1 178 khi chia cho a đều có số dư là 16.
về câu hỏi!