Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Vì 24 chia hết cho 12 nên ƯCLN(12, 24) = 12.
Khi đó
Vì 39 chia hết cho 13 nên ƯCLN(13, 39) = 13.
Khi đó
Vì 105 chia hết cho 35 nên ƯCLN(35, 105) = 35.
Khi đó
b) Ta có 120 = 23.3.5, 245 = 5.72 nên ƯCLN(120, 245) = 5.
Khi đó
Ta có: 134 = 2.67, 402 = 2.3.67 nên ƯCLN(134, 402) = 2.67 = 134.
Khi đó
Ta có 852 chia hết cho 213 nên ƯCLN(213, 852) = 213.
Khi đó
c) Vì 1 170 = 234.5 nên chia hết cho 234. Do đó ƯCLN(234, 1 170) = 234.
Khi đó
Vì 3 663 = 1 221.3 nên chia hết cho 1 221. Do đó ƯCLN(1 221, 3 663) = 1 221.
Khi đó
Vì 31 995 = 2 133.15 nên chia hết cho 2 133. Do đó ƯCLN(31 995, 2 133) = 2 133.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
a) Số nào là ước chung của 15 và 105 trong các số sau: 1; 5; 13; 15; 35; 53?
b) Tìm ƯCLN(27, 156).
c) Tìm ƯCLN(106, 318), từ đó tìm các ước chung của 424, 636.
Câu 2:
Tìm các số tự nhiên a, b, biết:
a) a + b = 192 và ƯCLN(a, b) = 24;
b) ab = 216 và ƯCLN(a, b) = 6.
Câu 3:
Ba khối 6, 7 và 8 lần lượt có 300 học sinh, 276 học sinh và 252 học sinh xếp thành các hàng dọc để diễu hành sao cho số hàng dọc của mỗi khối là như nhau. Có thể xếp nhiều nhất thành mấy hàng dọc để mỗi khối đều không có ai lẻ hàng? Khi đó ở mỗi hàng dọc của mỗi khối có bao nhiêu học sinh?
Câu 4:
Một lớp học có 27 học sinh nam và 18 học sinh nữ. Có bao nhiêu cách chia lớp đó thành các tổ sao cho số học sinh nam và số học sinh nữ ở mỗi tổ là như nhau? Cách chia nào để mỗi tổ có số học sinh ít nhất?
Câu 5:
Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau:
a) n + 2 và n + 3;
b) 2n + 1 và 9n + 4.
Câu 6:
Tìm số tự nhiên a, biết:
a) 388 chia cho a thì dư 38, còn 508 chia cho a thì dư 18;
b) 1 012 và 1 178 khi chia cho a đều có số dư là 16.
về câu hỏi!