Câu hỏi:
12/07/2024 1,149Cho ΔABC vuông tại A. Đường trung tuyến AN. Điểm M là hình chiếu vuông góc của N trên AB. Vẽ điểm Q đối xứng với với điểm N qua AC. Gọi giao điểm của NQ và AC là P.
1) Các tứ giác AMNP, ANCQ là hình gì? Vì sao?
2) AN cắt MP tại điểm E. Chứng minh: Ba điểm B, E, Q thẳng hàng.
3) Tam giác ABC có thêm điều kiện gì để tứ giác ABCQ là hình thang cân.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
1) Xét tứ giác AMNP, có: \(\widehat {MAN} = \widehat {AMN} = \widehat {APN} = 90^\circ \)
Do đó tứ giác AMNP là hình chữ nhật.
Ta có: \(\left\{ \begin{array}{l}NP \bot AC\\AB \bot AC\end{array} \right. \Rightarrow NP//AB\)
Xét tam giác ABC có: N là trung điểm của BC và NP // AB
Suy ra P là trung điểm của AC.
Vì N đối xứng với Q qua AC nên P là trung điểm của AC.
Xét tứ giác ANCQ có hai đường chéo AC và NQ cắt nhau tại trung điểm P của mỗi đường
Suy ra tứ giác ANCQ là hình bình hành
Mà có \(AC \bot NQ\) (gt)
Vậy tứ giác ANCQ là hình thoi
2) Ta có AMNP là hình chữ nhật có AN cắt MP tại E
Suy ra E là trung điểm của AN và MP
Xét tam giác ABC có: N, P là trung điểm của BC, AC
Nên NP là đường trung bình trong tam giác ABC.
\( \Rightarrow NP = \frac{1}{2}AB\)
mà \(NP = \frac{1}{2}NQ\) (vì P là trung điểm của NQ)
⇒ AB = NQ
Xét tứ giác ABNQ có: NQ = AB (cmt) và NQ // AB (vì NP // AB)Suy ra ABNQ là hình bình hànhmà E là trung điểm của AN (cmt)Nên E cũng là trung điểm của BQVậy 3 điểm B, E, Q thẳng hàng
3) Vì ABNQ là hình bình hành nên AQ // BN
Hay AQ // BC
Do đó ABCQ là hình thang.
Vì ABNQ là hình thoi nên CA là phân giác của góc QCN
\( \Rightarrow \widehat {ACB} = \widehat {ACQ} = \frac{1}{2}\widehat {QCB}\) hay \(\widehat {QCB} = 2\widehat {ACB}\)
Để hình thang ABCQ là hình thang cân thì \(\widehat {ABC} = \widehat {QCB}\)
Mà \(\widehat {QCB} = 2\widehat {ACB}\)
\( \Rightarrow \widehat {ABC} = 2\widehat {ACB}\)
Xét ΔABC vuông tại A có: \(\widehat {ABC} + \widehat {ACB} = 90^\circ \)
\( \Rightarrow 2\widehat {ACB} + \widehat {ACB} = 90^\circ \)
\( \Rightarrow 3\widehat {ACB} = 90^\circ \)
\( \Rightarrow \widehat {ACB} = 30^\circ \)
Vậy tam giác ABC có \(\widehat {ACB} = 30^\circ \) thì ABCQ là hình thang cân.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
1) \(\frac{{x - 5}}{{x - 2}} - \frac{{x + 4}}{{2x - {x^2}}}\);
2) \(\frac{{x - 3}}{{x + 2}} + \frac{{4x}}{{x - 3}} - \frac{{8x + 4{x^2}}}{{{x^2} - x - 6}}\).
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
15 câu Trắc nghiệm Toán 8 KNTT Bài 1: Đơn thức có đáp án
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
Bài tập Nhân đơn thức với đa thức (có lời giải chi tiết)
Đề kiểm tra Cuối kì 1 Toán 8 CTST có đáp án (Đề 1)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 2)
về câu hỏi!