Câu hỏi:

27/03/2022 194

Cho hàm số y=13x3(m+2)x2+(m2+4m)x+5 với m là tham số thực. Tập hợp các giá trị m để hàm số đồng biến trên khoảng (3;8) là

Đáp án chính xác

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có y'=x22(m+2)x+(m2+4m),x.

y'=0[x=mx=m+4.

Do m<m+4,m nên ta có bảng biến thiên của hàm số đã cho như sau:

 Cho hàm số y=1/3*x^3-(m+2)*x^2+5 với m là tham số thực. Tập hợp các giá trị  m để hàm số đồng biến trên khoảng   là (ảnh 1)

Hàm số đồng biến trên khoảng (3;8) khi và chỉ khi [8mm+43[8mm1.

Đáp án B

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=f(x) xác định trên R và hàm số y=f'(x) có đồ thị như hình vẽ.

 Cho hàm số  y=f(x) xác định trên R  và hàm số f'(x)  có đồ thị như hình vẽ.Tìm số điểm cực trị của hàm số f(x^2-3) (ảnh 1)

Tìm số điểm cực trị của hàm số y=f(x23).

Xem đáp án » 27/03/2022 16,734

Câu 2:

Cho hàm số y=f(x) xác định và liên tục trên đoạn [1;5] có đồ thị của y=f'(x) được cho như hình bên dưới

Cho hàm số y=f(x) xác định và liên tục trên đoạn  (1;5) có đồ thị của y=f'(x)được cho như hình bên dưới (ảnh 1)

Hàm số g(x)=2f(x)+x24x+4 đồng biến trên khoảng 

Xem đáp án » 27/03/2022 4,305

Câu 3:

Có bao nhiêu giá trị nguyên của tham số m để hàm số y=(m+1)x2xm đồng biến trên từng khoảng xác định của nó?

Xem đáp án » 26/03/2022 4,253

Câu 4:

Có bao nhiêu giá trị nguyên của tham số m để phương trình x33x2m=0 có 3 nghiệm phân biệt? 

Xem đáp án » 26/03/2022 3,273

Câu 5:

Cho hàm số f(x) có đạo hàm là f'(x)=x(x+1)2(x2)4,x. Số điểm cực tiểu của hàm số y=f(x) là 

Xem đáp án » 26/03/2022 2,060

Câu 6:

Cho cấp số cộng (un) với u1=2 và u3=4. Công sai của cấp số cộng đã cho bằng

Xem đáp án » 26/03/2022 1,924

Câu 7:

Cho hàm số y=x22x+m2+1x1 có đồ thị (C). Tìm tất cả các giá trị thực của tham số m để (C) có tiệm cận đứng.

Xem đáp án » 26/03/2022 1,843
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua