Câu hỏi:

02/04/2022 327 Lưu

Cho hàm số f(x)=ax4+bx3+cx2+dx+e . Hàm số y=f'(x)  có đồ thị như hình vẽ. Trong các khẳng định sau, khẳng định nào đúng?
Cho hàm số f(x)=ax^4+bx^3+cx^2+dx+e hàm số y=f'(x) (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Theo đồ thị ta có f'(0)=0d=0  và hệ số a<0 .

Xét 10f'(x)dx=f(x)10=a+bc+d , mà 10f'(x)dx<0  

nên ta có a+bc+d<0 (1)

Hay a+c>b+d . Do đó ta loại C.

Thay d=0  ta có a>bc , vì a<0  nên bc<0 . Loại D.

Xét 01f'(x)dx=f(x)01=a+b+c+d , mà 01f'(x)dx>0  

nên ta có a+b+c+d>0 (2).

Do đó ta loại B.

Từ (2) ta có abcd<0  cộng từng vế với (1) ta có a+c>0

Chọn đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích một cánh hoa là diện tích hình phẳng được tính theo công thức sau:
S=02020x120x2dx=23.20.x3160x3020=4003cm2
Chọn đáp án B

Câu 2

Lời giải

Chọn đáp án C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP