Câu hỏi:

06/04/2022 996 Lưu

Tìm giá trị của tham số m thực để giá trị nhỏ nhất của hàm số y=2x+mx+1 trên đoạn 0;4 bằng 3.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Ta có : y'=2mx+12
+ Xét m=2
Hàm số trở thành y=2: là hàm số hằng nên không đạt giá trị nhỏ nhất bằng 3
m=2(loại)
+ Xét m>2.
y'=2mx+12<0 (x1)miny0;4=y(4)=8+m5.
8+m5=3m=7(thoả mãn).
+ Xét m<2.
y'=2mx+12>0 (x1)miny0;4=y(0)=m.
m=3(loại).
Vậy m=7.
Chọn đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Theo bảng nguyên hàm của một số hàm số thường gặp ta có: Phương án A, B, C đúng.

Phương án D sai vì sinx dx=cosx+C .
Chọn đáp án A

Lời giải

Ta có z3=1z31=0z1z2+z+1=0z=1z=12±32i

Vậy có 3 số phức z  thỏa mãn z3=1 .

Chọn đáp án B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP