Câu hỏi:

06/04/2022 218

Xét một con lắc lò xo gồm vật nhỏ và lò xo nhẹ dao động điều hòa trên mặt phẳng nằm ngang với biên độ A. Chọn gốc thế năng tại vị trí cân bằng. Tại vị trí con lắc có động năng bằng cơ năng, li độ của vật có giá trị là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

\[{\rm{W}} = {{\rm{W}}_d} + {{\rm{W}}_t}\]

\[ \Leftrightarrow \frac{1}{2}k{A^2} = \frac{1}{2}m{v^2} + \frac{1}{2}k{{\rm{x}}^2}\]

Tại VTCB thế năng bằng 0.

Vị trí con lắc có động năng bằng cơ năng =>là vị trí động năng cực đại =>VTCB.

Tại VTCB, li độ x = 0.

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Tốc độ góc của con lắc: \[\omega = \sqrt {\frac{k}{m}} \]

Tốc độ cực đại của vật là \[{v_{{\rm{max}}}} = \omega A = A.\sqrt {\frac{k}{m}} \]

Chọn đáp án A

Câu 2

Lời giải

Tại vị trí có động năng gấp n lần thế năng của vật: Wđ = nWt

\(\left\{ {\begin{array}{*{20}{c}}{{W_d} = n{W_t}}\\{W = {W_t} + {W_d}}\end{array}} \right. \to \left\{ {\begin{array}{*{20}{c}}{{W_t} = \frac{1}{{n + 1}}W}\\{{W_d} = \frac{n}{{n + 1}}W}\end{array}} \right.\)

\( \to \left\{ {\begin{array}{*{20}{c}}{x = \pm \frac{A}{{\sqrt {n + 1} }}}\\{v = \pm A\omega \sqrt {\frac{n}{{n + 1}}} }\end{array}} \right.\)

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP