ĐGNL ĐHQG Hà Nội - Khoa học tự nhiên - Phóng xạ
34 người thi tuần này 4.6 1.2 K lượt thi 7 câu hỏi 30 phút
🔥 Đề thi HOT:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 8)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
A, B, C - đúng
D -sai vì: Hằng số phóng xạ \[\lambda = \frac{{\ln 2}}{T}\]
Đáp án cần chọn là: D
Lời giải
Ta có:
+ Số hạt nhân phóng xạ còn lại: \[N = {N_0}{2^{ - \frac{t}{T}}}\]
+ Số mol chất phóng xạ còn lại: \[{n_{(t)}} = \frac{{{m_{(t)}}}}{A} = \frac{{{m_0}{{.2}^{ - \frac{t}{T}}}}}{A}\]
+ Khối lượng của chất đã phân rã: \[{\rm{\Delta }}m = {m_0}(1 - {2^{ - \frac{t}{T}}})\]
+ Độ phóng xạ của lượng chất còn lại: \[H = \frac{{{H_0}}}{{{2^{\frac{t}{T}}}}} = {H_0}{.2^{ - \frac{t}{T}}}\]
=>Khối lượng của lượng chất đã phân rã không biến thiên cùng quy luật với các đại lượng còn lại
Đáp án cần chọn là: C
Lời giải
Khối lượng Co còn lại sau 10,66 năm là:
\[m = {m_0}{.2^{ - \frac{t}{T}}} = {1000.2^{ - \frac{{10,66}}{{5,33}}}} = 250g\]
Số nguyên tử Coban còn lại là:
\[N = \frac{m}{A}.{N_A} = \frac{{250}}{{60}}{.6,02.10^{23}} = {2,51.10^{24}}\]
Đáp án cần chọn là: A
Lời giải
Số hạt nhân mẹ còn lại sau thời gian t được xác định bởi: \[N = {N_0}{.2^{\frac{{ - t}}{T}}}\]
Số hạt nhân con được tạo thành hay số hạt nhân mẹ đã bị phân rã sau thời gian t được xác định bởi:
\[\begin{array}{*{20}{l}}{N' = {N_0} - N = {N_0}.(1 - {2^{\frac{{ - t}}{T}}}) = 70{\rm{\% }}{N_0}}\\{ \Rightarrow (1 - {2^{\frac{{ - t}}{T}}}) = 70{\rm{\% }} = 0,7 \Rightarrow {2^{\frac{{ - t}}{T}}} = 0,3}\\{ \Rightarrow t = - T.{{\log }_2}(0,3) = 1,74T = 1,74.3,8 = 6,6}\end{array}\]
Vậy thời gian là 6,6 ngày.
Đáp án cần chọn là: A
Lời giải
Ta có: \[N = {N_0}{e^{ - \lambda t}} \Rightarrow \] Số hạt bị phân rã là:
\[{\rm{\Delta }}N = {N_0} - {N_0}{e^{ - \lambda t}} = {N_0}(1 - {e^{ - \lambda t}})\]
\[ \Rightarrow \frac{{{\rm{\Delta }}N}}{{{N_0}}} = 1 - {e^{ - \lambda t}} \Rightarrow 1 - \frac{{{\rm{\Delta }}N}}{{{N_0}}} = {e^{ - \lambda t}}\]
\[ \Rightarrow \frac{1}{{\left( {1 - \frac{{{\rm{\Delta }}N}}{{{N_0}}}} \right)}} = {e^{\lambda t}} \Rightarrow \ln {\left( {1 - \frac{{{\rm{\Delta }}N}}{{{N_0}}}} \right)^{ - 1}} = \lambda t\]
Từ đồ thị ta thấy \[\lambda \approx 0,078\]
\[ \Rightarrow T = \frac{{\ln 2}}{\lambda } \approx 8,9\]Đáp án cần chọn là: B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
239 Đánh giá
50%
40%
0%
0%
0%